MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcmfunsnlem2 Structured version   Visualization version   GIF version

Theorem lcmfunsnlem2 15400
Description: Lemma for lcmfunsn 15404 and lcmfunsnlem 15401 (Induction step part 2). (Contributed by AV, 26-Aug-2020.)
Assertion
Ref Expression
lcmfunsnlem2 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → ∀𝑛 ∈ ℤ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))
Distinct variable groups:   𝑦,𝑚,𝑧   𝑘,𝑛,𝑦,𝑧,𝑚

Proof of Theorem lcmfunsnlem2
StepHypRef Expression
1 nfv 1883 . . 3 𝑛(𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)
2 nfv 1883 . . . 4 𝑛𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)
3 nfra1 2970 . . . 4 𝑛𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)
42, 3nfan 1868 . . 3 𝑛(∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))
51, 4nfan 1868 . 2 𝑛((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)))
6 0z 11426 . . . . 5 0 ∈ ℤ
7 eqoreldif 4257 . . . . 5 (0 ∈ ℤ → (𝑛 ∈ ℤ ↔ (𝑛 = 0 ∨ 𝑛 ∈ (ℤ ∖ {0}))))
86, 7ax-mp 5 . . . 4 (𝑛 ∈ ℤ ↔ (𝑛 = 0 ∨ 𝑛 ∈ (ℤ ∖ {0})))
9 simp2 1082 . . . . . . . . . . . . 13 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → 𝑦 ⊆ ℤ)
10 snssi 4371 . . . . . . . . . . . . . 14 (𝑧 ∈ ℤ → {𝑧} ⊆ ℤ)
11103ad2ant1 1102 . . . . . . . . . . . . 13 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → {𝑧} ⊆ ℤ)
129, 11unssd 3822 . . . . . . . . . . . 12 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (𝑦 ∪ {𝑧}) ⊆ ℤ)
13 snssi 4371 . . . . . . . . . . . . 13 (0 ∈ ℤ → {0} ⊆ ℤ)
146, 13mp1i 13 . . . . . . . . . . . 12 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → {0} ⊆ ℤ)
1512, 14unssd 3822 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → ((𝑦 ∪ {𝑧}) ∪ {0}) ⊆ ℤ)
16 c0ex 10072 . . . . . . . . . . . . . 14 0 ∈ V
1716snid 4241 . . . . . . . . . . . . 13 0 ∈ {0}
1817olci 405 . . . . . . . . . . . 12 (0 ∈ (𝑦 ∪ {𝑧}) ∨ 0 ∈ {0})
19 elun 3786 . . . . . . . . . . . 12 (0 ∈ ((𝑦 ∪ {𝑧}) ∪ {0}) ↔ (0 ∈ (𝑦 ∪ {𝑧}) ∨ 0 ∈ {0}))
2018, 19mpbir 221 . . . . . . . . . . 11 0 ∈ ((𝑦 ∪ {𝑧}) ∪ {0})
21 lcmf0val 15382 . . . . . . . . . . 11 ((((𝑦 ∪ {𝑧}) ∪ {0}) ⊆ ℤ ∧ 0 ∈ ((𝑦 ∪ {𝑧}) ∪ {0})) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {0})) = 0)
2215, 20, 21sylancl 695 . . . . . . . . . 10 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {0})) = 0)
2322adantr 480 . . . . . . . . 9 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 = 0) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {0})) = 0)
24 sneq 4220 . . . . . . . . . . . 12 (𝑛 = 0 → {𝑛} = {0})
2524adantl 481 . . . . . . . . . . 11 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 = 0) → {𝑛} = {0})
2625uneq2d 3800 . . . . . . . . . 10 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 = 0) → ((𝑦 ∪ {𝑧}) ∪ {𝑛}) = ((𝑦 ∪ {𝑧}) ∪ {0}))
2726fveq2d 6233 . . . . . . . . 9 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 = 0) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = (lcm‘((𝑦 ∪ {𝑧}) ∪ {0})))
28 oveq2 6698 . . . . . . . . . 10 (𝑛 = 0 → ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 0))
29 snfi 8079 . . . . . . . . . . . . . . 15 {𝑧} ∈ Fin
30 unfi 8268 . . . . . . . . . . . . . . 15 ((𝑦 ∈ Fin ∧ {𝑧} ∈ Fin) → (𝑦 ∪ {𝑧}) ∈ Fin)
3129, 30mpan2 707 . . . . . . . . . . . . . 14 (𝑦 ∈ Fin → (𝑦 ∪ {𝑧}) ∈ Fin)
32313ad2ant3 1104 . . . . . . . . . . . . 13 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (𝑦 ∪ {𝑧}) ∈ Fin)
33 lcmfcl 15388 . . . . . . . . . . . . 13 (((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑦 ∪ {𝑧}) ∈ Fin) → (lcm‘(𝑦 ∪ {𝑧})) ∈ ℕ0)
3412, 32, 33syl2anc 694 . . . . . . . . . . . 12 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (lcm‘(𝑦 ∪ {𝑧})) ∈ ℕ0)
3534nn0zd 11518 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (lcm‘(𝑦 ∪ {𝑧})) ∈ ℤ)
36 lcm0val 15354 . . . . . . . . . . 11 ((lcm‘(𝑦 ∪ {𝑧})) ∈ ℤ → ((lcm‘(𝑦 ∪ {𝑧})) lcm 0) = 0)
3735, 36syl 17 . . . . . . . . . 10 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → ((lcm‘(𝑦 ∪ {𝑧})) lcm 0) = 0)
3828, 37sylan9eqr 2707 . . . . . . . . 9 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 = 0) → ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) = 0)
3923, 27, 383eqtr4d 2695 . . . . . . . 8 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 = 0) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))
4039ex 449 . . . . . . 7 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (𝑛 = 0 → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
4140adantr 480 . . . . . 6 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (𝑛 = 0 → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
4241com12 32 . . . . 5 (𝑛 = 0 → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
439adantl 481 . . . . . . . . . . . . . . 15 (((0 ∈ 𝑦𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → 𝑦 ⊆ ℤ)
4411adantl 481 . . . . . . . . . . . . . . 15 (((0 ∈ 𝑦𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → {𝑧} ⊆ ℤ)
4543, 44unssd 3822 . . . . . . . . . . . . . 14 (((0 ∈ 𝑦𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (𝑦 ∪ {𝑧}) ⊆ ℤ)
46 elun1 3813 . . . . . . . . . . . . . . 15 (0 ∈ 𝑦 → 0 ∈ (𝑦 ∪ {𝑧}))
4746ad2antrr 762 . . . . . . . . . . . . . 14 (((0 ∈ 𝑦𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → 0 ∈ (𝑦 ∪ {𝑧}))
48 lcmf0val 15382 . . . . . . . . . . . . . 14 (((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ 0 ∈ (𝑦 ∪ {𝑧})) → (lcm‘(𝑦 ∪ {𝑧})) = 0)
4945, 47, 48syl2anc 694 . . . . . . . . . . . . 13 (((0 ∈ 𝑦𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (lcm‘(𝑦 ∪ {𝑧})) = 0)
5049oveq2d 6706 . . . . . . . . . . . 12 (((0 ∈ 𝑦𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (𝑛 lcm (lcm‘(𝑦 ∪ {𝑧}))) = (𝑛 lcm 0))
51 eldifi 3765 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℤ ∖ {0}) → 𝑛 ∈ ℤ)
52 lcm0val 15354 . . . . . . . . . . . . . 14 (𝑛 ∈ ℤ → (𝑛 lcm 0) = 0)
5351, 52syl 17 . . . . . . . . . . . . 13 (𝑛 ∈ (ℤ ∖ {0}) → (𝑛 lcm 0) = 0)
5453ad2antlr 763 . . . . . . . . . . . 12 (((0 ∈ 𝑦𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (𝑛 lcm 0) = 0)
5550, 54eqtrd 2685 . . . . . . . . . . 11 (((0 ∈ 𝑦𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (𝑛 lcm (lcm‘(𝑦 ∪ {𝑧}))) = 0)
56 simp3 1083 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → 𝑦 ∈ Fin)
5756, 29, 30sylancl 695 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (𝑦 ∪ {𝑧}) ∈ Fin)
5812, 57, 33syl2anc 694 . . . . . . . . . . . . 13 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (lcm‘(𝑦 ∪ {𝑧})) ∈ ℕ0)
5958nn0zd 11518 . . . . . . . . . . . 12 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (lcm‘(𝑦 ∪ {𝑧})) ∈ ℤ)
6051adantl 481 . . . . . . . . . . . 12 ((0 ∈ 𝑦𝑛 ∈ (ℤ ∖ {0})) → 𝑛 ∈ ℤ)
61 lcmcom 15353 . . . . . . . . . . . 12 (((lcm‘(𝑦 ∪ {𝑧})) ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) = (𝑛 lcm (lcm‘(𝑦 ∪ {𝑧}))))
6259, 60, 61syl2anr 494 . . . . . . . . . . 11 (((0 ∈ 𝑦𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) = (𝑛 lcm (lcm‘(𝑦 ∪ {𝑧}))))
6312adantl 481 . . . . . . . . . . . . 13 (((0 ∈ 𝑦𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (𝑦 ∪ {𝑧}) ⊆ ℤ)
6451snssd 4372 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℤ ∖ {0}) → {𝑛} ⊆ ℤ)
6564ad2antlr 763 . . . . . . . . . . . . 13 (((0 ∈ 𝑦𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → {𝑛} ⊆ ℤ)
6663, 65unssd 3822 . . . . . . . . . . . 12 (((0 ∈ 𝑦𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ⊆ ℤ)
6746orcd 406 . . . . . . . . . . . . . 14 (0 ∈ 𝑦 → (0 ∈ (𝑦 ∪ {𝑧}) ∨ 0 ∈ {𝑛}))
68 elun 3786 . . . . . . . . . . . . . 14 (0 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ↔ (0 ∈ (𝑦 ∪ {𝑧}) ∨ 0 ∈ {𝑛}))
6967, 68sylibr 224 . . . . . . . . . . . . 13 (0 ∈ 𝑦 → 0 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}))
7069ad2antrr 762 . . . . . . . . . . . 12 (((0 ∈ 𝑦𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → 0 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}))
71 lcmf0val 15382 . . . . . . . . . . . 12 ((((𝑦 ∪ {𝑧}) ∪ {𝑛}) ⊆ ℤ ∧ 0 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = 0)
7266, 70, 71syl2anc 694 . . . . . . . . . . 11 (((0 ∈ 𝑦𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = 0)
7355, 62, 723eqtr4rd 2696 . . . . . . . . . 10 (((0 ∈ 𝑦𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))
7473a1d 25 . . . . . . . . 9 (((0 ∈ 𝑦𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → ((∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
7574ex 449 . . . . . . . 8 ((0 ∈ 𝑦𝑛 ∈ (ℤ ∖ {0})) → ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → ((∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))))
7675impd 446 . . . . . . 7 ((0 ∈ 𝑦𝑛 ∈ (ℤ ∖ {0})) → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
7776ex 449 . . . . . 6 (0 ∈ 𝑦 → (𝑛 ∈ (ℤ ∖ {0}) → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))))
78 elsng 4224 . . . . . . . . . . . . . . . . . . . 20 (0 ∈ ℤ → (0 ∈ {𝑧} ↔ 0 = 𝑧))
79 eqcom 2658 . . . . . . . . . . . . . . . . . . . 20 (0 = 𝑧𝑧 = 0)
8078, 79syl6bb 276 . . . . . . . . . . . . . . . . . . 19 (0 ∈ ℤ → (0 ∈ {𝑧} ↔ 𝑧 = 0))
816, 80ax-mp 5 . . . . . . . . . . . . . . . . . 18 (0 ∈ {𝑧} ↔ 𝑧 = 0)
8281biimpri 218 . . . . . . . . . . . . . . . . 17 (𝑧 = 0 → 0 ∈ {𝑧})
8382ad2antrr 762 . . . . . . . . . . . . . . . 16 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → 0 ∈ {𝑧})
8483olcd 407 . . . . . . . . . . . . . . 15 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (0 ∈ 𝑦 ∨ 0 ∈ {𝑧}))
85 elun 3786 . . . . . . . . . . . . . . 15 (0 ∈ (𝑦 ∪ {𝑧}) ↔ (0 ∈ 𝑦 ∨ 0 ∈ {𝑧}))
8684, 85sylibr 224 . . . . . . . . . . . . . 14 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → 0 ∈ (𝑦 ∪ {𝑧}))
8712, 86, 48syl2an2 892 . . . . . . . . . . . . 13 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (lcm‘(𝑦 ∪ {𝑧})) = 0)
8887oveq2d 6706 . . . . . . . . . . . 12 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (𝑛 lcm (lcm‘(𝑦 ∪ {𝑧}))) = (𝑛 lcm 0))
8951ad2antlr 763 . . . . . . . . . . . . 13 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → 𝑛 ∈ ℤ)
9089, 52syl 17 . . . . . . . . . . . 12 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (𝑛 lcm 0) = 0)
9188, 90eqtrd 2685 . . . . . . . . . . 11 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (𝑛 lcm (lcm‘(𝑦 ∪ {𝑧}))) = 0)
9259, 89, 61syl2an2 892 . . . . . . . . . . 11 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) = (𝑛 lcm (lcm‘(𝑦 ∪ {𝑧}))))
9312adantl 481 . . . . . . . . . . . . 13 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (𝑦 ∪ {𝑧}) ⊆ ℤ)
9464ad2antlr 763 . . . . . . . . . . . . 13 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → {𝑛} ⊆ ℤ)
9593, 94unssd 3822 . . . . . . . . . . . 12 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ⊆ ℤ)
96 sneq 4220 . . . . . . . . . . . . . . . . . 18 (𝑧 = 0 → {𝑧} = {0})
9717, 96syl5eleqr 2737 . . . . . . . . . . . . . . . . 17 (𝑧 = 0 → 0 ∈ {𝑧})
9897ad2antrr 762 . . . . . . . . . . . . . . . 16 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → 0 ∈ {𝑧})
9998olcd 407 . . . . . . . . . . . . . . 15 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (0 ∈ 𝑦 ∨ 0 ∈ {𝑧}))
10099, 85sylibr 224 . . . . . . . . . . . . . 14 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → 0 ∈ (𝑦 ∪ {𝑧}))
101100orcd 406 . . . . . . . . . . . . 13 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (0 ∈ (𝑦 ∪ {𝑧}) ∨ 0 ∈ {𝑛}))
102101, 68sylibr 224 . . . . . . . . . . . 12 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → 0 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}))
10395, 102, 71syl2anc 694 . . . . . . . . . . 11 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = 0)
10491, 92, 1033eqtr4rd 2696 . . . . . . . . . 10 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))
105104a1d 25 . . . . . . . . 9 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → ((∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
106105ex 449 . . . . . . . 8 ((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) → ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → ((∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))))
107106impd 446 . . . . . . 7 ((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
108107ex 449 . . . . . 6 (𝑧 = 0 → (𝑛 ∈ (ℤ ∖ {0}) → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))))
109 ioran 510 . . . . . . . 8 (¬ (0 ∈ 𝑦𝑧 = 0) ↔ (¬ 0 ∈ 𝑦 ∧ ¬ 𝑧 = 0))
110 df-nel 2927 . . . . . . . . 9 (0 ∉ 𝑦 ↔ ¬ 0 ∈ 𝑦)
111 df-ne 2824 . . . . . . . . 9 (𝑧 ≠ 0 ↔ ¬ 𝑧 = 0)
112110, 111anbi12i 733 . . . . . . . 8 ((0 ∉ 𝑦𝑧 ≠ 0) ↔ (¬ 0 ∈ 𝑦 ∧ ¬ 𝑧 = 0))
113109, 112bitr4i 267 . . . . . . 7 (¬ (0 ∈ 𝑦𝑧 = 0) ↔ (0 ∉ 𝑦𝑧 ≠ 0))
114 eldif 3617 . . . . . . . 8 (𝑛 ∈ (ℤ ∖ {0}) ↔ (𝑛 ∈ ℤ ∧ ¬ 𝑛 ∈ {0}))
115 velsn 4226 . . . . . . . . . . . . 13 (𝑛 ∈ {0} ↔ 𝑛 = 0)
116115bicomi 214 . . . . . . . . . . . 12 (𝑛 = 0 ↔ 𝑛 ∈ {0})
117116necon3abii 2869 . . . . . . . . . . 11 (𝑛 ≠ 0 ↔ ¬ 𝑛 ∈ {0})
118 lcmfunsnlem2lem2 15399 . . . . . . . . . . . . 13 (((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))
119118exp520 1310 . . . . . . . . . . . 12 (0 ∉ 𝑦 → (𝑧 ≠ 0 → (𝑛 ≠ 0 → (𝑛 ∈ ℤ → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))))))
120119imp 444 . . . . . . . . . . 11 ((0 ∉ 𝑦𝑧 ≠ 0) → (𝑛 ≠ 0 → (𝑛 ∈ ℤ → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))))
121117, 120syl5bir 233 . . . . . . . . . 10 ((0 ∉ 𝑦𝑧 ≠ 0) → (¬ 𝑛 ∈ {0} → (𝑛 ∈ ℤ → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))))
122121com23 86 . . . . . . . . 9 ((0 ∉ 𝑦𝑧 ≠ 0) → (𝑛 ∈ ℤ → (¬ 𝑛 ∈ {0} → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))))
123122impd 446 . . . . . . . 8 ((0 ∉ 𝑦𝑧 ≠ 0) → ((𝑛 ∈ ℤ ∧ ¬ 𝑛 ∈ {0}) → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))))
124114, 123syl5bi 232 . . . . . . 7 ((0 ∉ 𝑦𝑧 ≠ 0) → (𝑛 ∈ (ℤ ∖ {0}) → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))))
125113, 124sylbi 207 . . . . . 6 (¬ (0 ∈ 𝑦𝑧 = 0) → (𝑛 ∈ (ℤ ∖ {0}) → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))))
12677, 108, 125ecase3 1001 . . . . 5 (𝑛 ∈ (ℤ ∖ {0}) → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
12742, 126jaoi 393 . . . 4 ((𝑛 = 0 ∨ 𝑛 ∈ (ℤ ∖ {0})) → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
1288, 127sylbi 207 . . 3 (𝑛 ∈ ℤ → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
129128com12 32 . 2 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (𝑛 ∈ ℤ → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
1305, 129ralrimi 2986 1 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → ∀𝑛 ∈ ℤ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wnel 2926  wral 2941  cdif 3604  cun 3605  wss 3607  {csn 4210   class class class wbr 4685  cfv 5926  (class class class)co 6690  Fincfn 7997  0cc0 9974  0cn0 11330  cz 11415  cdvds 15027   lcm clcm 15348  lcmclcmf 15349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-fz 12365  df-fzo 12505  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-prod 14680  df-dvds 15028  df-gcd 15264  df-lcm 15350  df-lcmf 15351
This theorem is referenced by:  lcmfunsnlem  15401
  Copyright terms: Public domain W3C validator