![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lcmf0val | Structured version Visualization version GIF version |
Description: The value, by convention, of the least common multiple for a set containing 0 is 0. (Contributed by AV, 21-Apr-2020.) (Proof shortened by AV, 16-Sep-2020.) |
Ref | Expression |
---|---|
lcmf0val | ⊢ ((𝑍 ⊆ ℤ ∧ 0 ∈ 𝑍) → (lcm‘𝑍) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lcmf 15512 | . . 3 ⊢ lcm = (𝑧 ∈ 𝒫 ℤ ↦ if(0 ∈ 𝑧, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑧 𝑚 ∥ 𝑛}, ℝ, < ))) | |
2 | 1 | a1i 11 | . 2 ⊢ ((𝑍 ⊆ ℤ ∧ 0 ∈ 𝑍) → lcm = (𝑧 ∈ 𝒫 ℤ ↦ if(0 ∈ 𝑧, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑧 𝑚 ∥ 𝑛}, ℝ, < )))) |
3 | eleq2 2839 | . . . 4 ⊢ (𝑧 = 𝑍 → (0 ∈ 𝑧 ↔ 0 ∈ 𝑍)) | |
4 | raleq 3287 | . . . . . 6 ⊢ (𝑧 = 𝑍 → (∀𝑚 ∈ 𝑧 𝑚 ∥ 𝑛 ↔ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑛)) | |
5 | 4 | rabbidv 3339 | . . . . 5 ⊢ (𝑧 = 𝑍 → {𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑧 𝑚 ∥ 𝑛} = {𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑛}) |
6 | 5 | infeq1d 8539 | . . . 4 ⊢ (𝑧 = 𝑍 → inf({𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑧 𝑚 ∥ 𝑛}, ℝ, < ) = inf({𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑛}, ℝ, < )) |
7 | 3, 6 | ifbieq2d 4250 | . . 3 ⊢ (𝑧 = 𝑍 → if(0 ∈ 𝑧, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑧 𝑚 ∥ 𝑛}, ℝ, < )) = if(0 ∈ 𝑍, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑛}, ℝ, < ))) |
8 | iftrue 4231 | . . . 4 ⊢ (0 ∈ 𝑍 → if(0 ∈ 𝑍, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑛}, ℝ, < )) = 0) | |
9 | 8 | adantl 467 | . . 3 ⊢ ((𝑍 ⊆ ℤ ∧ 0 ∈ 𝑍) → if(0 ∈ 𝑍, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑛}, ℝ, < )) = 0) |
10 | 7, 9 | sylan9eqr 2827 | . 2 ⊢ (((𝑍 ⊆ ℤ ∧ 0 ∈ 𝑍) ∧ 𝑧 = 𝑍) → if(0 ∈ 𝑧, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑧 𝑚 ∥ 𝑛}, ℝ, < )) = 0) |
11 | zex 11588 | . . . . . 6 ⊢ ℤ ∈ V | |
12 | 11 | ssex 4936 | . . . . 5 ⊢ (𝑍 ⊆ ℤ → 𝑍 ∈ V) |
13 | elpwg 4305 | . . . . 5 ⊢ (𝑍 ∈ V → (𝑍 ∈ 𝒫 ℤ ↔ 𝑍 ⊆ ℤ)) | |
14 | 12, 13 | syl 17 | . . . 4 ⊢ (𝑍 ⊆ ℤ → (𝑍 ∈ 𝒫 ℤ ↔ 𝑍 ⊆ ℤ)) |
15 | 14 | ibir 257 | . . 3 ⊢ (𝑍 ⊆ ℤ → 𝑍 ∈ 𝒫 ℤ) |
16 | 15 | adantr 466 | . 2 ⊢ ((𝑍 ⊆ ℤ ∧ 0 ∈ 𝑍) → 𝑍 ∈ 𝒫 ℤ) |
17 | simpr 471 | . 2 ⊢ ((𝑍 ⊆ ℤ ∧ 0 ∈ 𝑍) → 0 ∈ 𝑍) | |
18 | 2, 10, 16, 17 | fvmptd 6430 | 1 ⊢ ((𝑍 ⊆ ℤ ∧ 0 ∈ 𝑍) → (lcm‘𝑍) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ∀wral 3061 {crab 3065 Vcvv 3351 ⊆ wss 3723 ifcif 4225 𝒫 cpw 4297 class class class wbr 4786 ↦ cmpt 4863 ‘cfv 6031 infcinf 8503 ℝcr 10137 0cc0 10138 < clt 10276 ℕcn 11222 ℤcz 11579 ∥ cdvds 15189 lcmclcmf 15510 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pr 5034 ax-cnex 10194 ax-resscn 10195 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-iota 5994 df-fun 6033 df-fv 6039 df-ov 6796 df-sup 8504 df-inf 8505 df-neg 10471 df-z 11580 df-lcmf 15512 |
This theorem is referenced by: lcmfcl 15549 lcmfeq0b 15551 dvdslcmf 15552 lcmftp 15557 lcmfunsnlem2 15561 |
Copyright terms: Public domain | W3C validator |