MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcmf0val Structured version   Visualization version   GIF version

Theorem lcmf0val 15543
Description: The value, by convention, of the least common multiple for a set containing 0 is 0. (Contributed by AV, 21-Apr-2020.) (Proof shortened by AV, 16-Sep-2020.)
Assertion
Ref Expression
lcmf0val ((𝑍 ⊆ ℤ ∧ 0 ∈ 𝑍) → (lcm𝑍) = 0)

Proof of Theorem lcmf0val
Dummy variables 𝑚 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-lcmf 15512 . . 3 lcm = (𝑧 ∈ 𝒫 ℤ ↦ if(0 ∈ 𝑧, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑧 𝑚𝑛}, ℝ, < )))
21a1i 11 . 2 ((𝑍 ⊆ ℤ ∧ 0 ∈ 𝑍) → lcm = (𝑧 ∈ 𝒫 ℤ ↦ if(0 ∈ 𝑧, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑧 𝑚𝑛}, ℝ, < ))))
3 eleq2 2839 . . . 4 (𝑧 = 𝑍 → (0 ∈ 𝑧 ↔ 0 ∈ 𝑍))
4 raleq 3287 . . . . . 6 (𝑧 = 𝑍 → (∀𝑚𝑧 𝑚𝑛 ↔ ∀𝑚𝑍 𝑚𝑛))
54rabbidv 3339 . . . . 5 (𝑧 = 𝑍 → {𝑛 ∈ ℕ ∣ ∀𝑚𝑧 𝑚𝑛} = {𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛})
65infeq1d 8539 . . . 4 (𝑧 = 𝑍 → inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑧 𝑚𝑛}, ℝ, < ) = inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛}, ℝ, < ))
73, 6ifbieq2d 4250 . . 3 (𝑧 = 𝑍 → if(0 ∈ 𝑧, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑧 𝑚𝑛}, ℝ, < )) = if(0 ∈ 𝑍, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛}, ℝ, < )))
8 iftrue 4231 . . . 4 (0 ∈ 𝑍 → if(0 ∈ 𝑍, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛}, ℝ, < )) = 0)
98adantl 467 . . 3 ((𝑍 ⊆ ℤ ∧ 0 ∈ 𝑍) → if(0 ∈ 𝑍, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛}, ℝ, < )) = 0)
107, 9sylan9eqr 2827 . 2 (((𝑍 ⊆ ℤ ∧ 0 ∈ 𝑍) ∧ 𝑧 = 𝑍) → if(0 ∈ 𝑧, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑧 𝑚𝑛}, ℝ, < )) = 0)
11 zex 11588 . . . . . 6 ℤ ∈ V
1211ssex 4936 . . . . 5 (𝑍 ⊆ ℤ → 𝑍 ∈ V)
13 elpwg 4305 . . . . 5 (𝑍 ∈ V → (𝑍 ∈ 𝒫 ℤ ↔ 𝑍 ⊆ ℤ))
1412, 13syl 17 . . . 4 (𝑍 ⊆ ℤ → (𝑍 ∈ 𝒫 ℤ ↔ 𝑍 ⊆ ℤ))
1514ibir 257 . . 3 (𝑍 ⊆ ℤ → 𝑍 ∈ 𝒫 ℤ)
1615adantr 466 . 2 ((𝑍 ⊆ ℤ ∧ 0 ∈ 𝑍) → 𝑍 ∈ 𝒫 ℤ)
17 simpr 471 . 2 ((𝑍 ⊆ ℤ ∧ 0 ∈ 𝑍) → 0 ∈ 𝑍)
182, 10, 16, 17fvmptd 6430 1 ((𝑍 ⊆ ℤ ∧ 0 ∈ 𝑍) → (lcm𝑍) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  wral 3061  {crab 3065  Vcvv 3351  wss 3723  ifcif 4225  𝒫 cpw 4297   class class class wbr 4786  cmpt 4863  cfv 6031  infcinf 8503  cr 10137  0cc0 10138   < clt 10276  cn 11222  cz 11579  cdvds 15189  lcmclcmf 15510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pr 5034  ax-cnex 10194  ax-resscn 10195
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-iota 5994  df-fun 6033  df-fv 6039  df-ov 6796  df-sup 8504  df-inf 8505  df-neg 10471  df-z 11580  df-lcmf 15512
This theorem is referenced by:  lcmfcl  15549  lcmfeq0b  15551  dvdslcmf  15552  lcmftp  15557  lcmfunsnlem2  15561
  Copyright terms: Public domain W3C validator