MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcmdvds Structured version   Visualization version   GIF version

Theorem lcmdvds 15368
Description: The lcm of two integers divides any integer the two divide. (Contributed by Steve Rodriguez, 20-Jan-2020.)
Assertion
Ref Expression
lcmdvds ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾))

Proof of Theorem lcmdvds
StepHypRef Expression
1 id 22 . . . . . 6 (0 ∥ 𝐾 → 0 ∥ 𝐾)
2 breq1 4688 . . . . . . . 8 (𝑀 = 0 → (𝑀𝐾 ↔ 0 ∥ 𝐾))
32adantl 481 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑀 = 0) → (𝑀𝐾 ↔ 0 ∥ 𝐾))
4 oveq1 6697 . . . . . . . . 9 (𝑀 = 0 → (𝑀 lcm 𝑁) = (0 lcm 𝑁))
5 0z 11426 . . . . . . . . . . 11 0 ∈ ℤ
6 lcmcom 15353 . . . . . . . . . . 11 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 lcm 𝑁) = (𝑁 lcm 0))
75, 6mpan 706 . . . . . . . . . 10 (𝑁 ∈ ℤ → (0 lcm 𝑁) = (𝑁 lcm 0))
8 lcm0val 15354 . . . . . . . . . 10 (𝑁 ∈ ℤ → (𝑁 lcm 0) = 0)
97, 8eqtrd 2685 . . . . . . . . 9 (𝑁 ∈ ℤ → (0 lcm 𝑁) = 0)
104, 9sylan9eqr 2707 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑀 = 0) → (𝑀 lcm 𝑁) = 0)
1110breq1d 4695 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑀 = 0) → ((𝑀 lcm 𝑁) ∥ 𝐾 ↔ 0 ∥ 𝐾))
123, 11imbi12d 333 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑀 = 0) → ((𝑀𝐾 → (𝑀 lcm 𝑁) ∥ 𝐾) ↔ (0 ∥ 𝐾 → 0 ∥ 𝐾)))
131, 12mpbiri 248 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 = 0) → (𝑀𝐾 → (𝑀 lcm 𝑁) ∥ 𝐾))
14133ad2antl3 1245 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝑀𝐾 → (𝑀 lcm 𝑁) ∥ 𝐾))
1514adantrd 483 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾))
1615ex 449 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 = 0 → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾)))
17 breq1 4688 . . . . . . . 8 (𝑁 = 0 → (𝑁𝐾 ↔ 0 ∥ 𝐾))
1817adantl 481 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 = 0) → (𝑁𝐾 ↔ 0 ∥ 𝐾))
19 oveq2 6698 . . . . . . . . 9 (𝑁 = 0 → (𝑀 lcm 𝑁) = (𝑀 lcm 0))
20 lcm0val 15354 . . . . . . . . 9 (𝑀 ∈ ℤ → (𝑀 lcm 0) = 0)
2119, 20sylan9eqr 2707 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 = 0) → (𝑀 lcm 𝑁) = 0)
2221breq1d 4695 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 = 0) → ((𝑀 lcm 𝑁) ∥ 𝐾 ↔ 0 ∥ 𝐾))
2318, 22imbi12d 333 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 = 0) → ((𝑁𝐾 → (𝑀 lcm 𝑁) ∥ 𝐾) ↔ (0 ∥ 𝐾 → 0 ∥ 𝐾)))
241, 23mpbiri 248 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 = 0) → (𝑁𝐾 → (𝑀 lcm 𝑁) ∥ 𝐾))
25243ad2antl2 1244 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (𝑁𝐾 → (𝑀 lcm 𝑁) ∥ 𝐾))
2625adantld 482 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾))
2726ex 449 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 = 0 → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾)))
28 neanior 2915 . . . . . 6 ((𝑀 ≠ 0 ∧ 𝑁 ≠ 0) ↔ ¬ (𝑀 = 0 ∨ 𝑁 = 0))
29 lcmcl 15361 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) ∈ ℕ0)
3029nn0zd 11518 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) ∈ ℤ)
31 dvds0 15044 . . . . . . . . . . . . . . . . 17 ((𝑀 lcm 𝑁) ∈ ℤ → (𝑀 lcm 𝑁) ∥ 0)
3230, 31syl 17 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) ∥ 0)
3332a1d 25 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 ∥ 0 ∧ 𝑁 ∥ 0) → (𝑀 lcm 𝑁) ∥ 0))
3433adantr 480 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 = 0) → ((𝑀 ∥ 0 ∧ 𝑁 ∥ 0) → (𝑀 lcm 𝑁) ∥ 0))
35 breq2 4689 . . . . . . . . . . . . . . . . 17 (𝐾 = 0 → (𝑀𝐾𝑀 ∥ 0))
36 breq2 4689 . . . . . . . . . . . . . . . . 17 (𝐾 = 0 → (𝑁𝐾𝑁 ∥ 0))
3735, 36anbi12d 747 . . . . . . . . . . . . . . . 16 (𝐾 = 0 → ((𝑀𝐾𝑁𝐾) ↔ (𝑀 ∥ 0 ∧ 𝑁 ∥ 0)))
38 breq2 4689 . . . . . . . . . . . . . . . 16 (𝐾 = 0 → ((𝑀 lcm 𝑁) ∥ 𝐾 ↔ (𝑀 lcm 𝑁) ∥ 0))
3937, 38imbi12d 333 . . . . . . . . . . . . . . 15 (𝐾 = 0 → (((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾) ↔ ((𝑀 ∥ 0 ∧ 𝑁 ∥ 0) → (𝑀 lcm 𝑁) ∥ 0)))
4039adantl 481 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 = 0) → (((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾) ↔ ((𝑀 ∥ 0 ∧ 𝑁 ∥ 0) → (𝑀 lcm 𝑁) ∥ 0)))
4134, 40mpbird 247 . . . . . . . . . . . . 13 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 = 0) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾))
4241adantrl 752 . . . . . . . . . . . 12 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐾 = 0)) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾))
4342adantllr 755 . . . . . . . . . . 11 ((((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐾 = 0)) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾))
4443adantlrr 757 . . . . . . . . . 10 ((((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝐾 ∈ ℤ ∧ 𝐾 = 0)) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾))
4544anassrs 681 . . . . . . . . 9 (((((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝐾 ∈ ℤ) ∧ 𝐾 = 0) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾))
46 nnabscl 14109 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (abs‘𝑀) ∈ ℕ)
47 nnabscl 14109 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈ ℕ)
48 nnabscl 14109 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℤ ∧ 𝐾 ≠ 0) → (abs‘𝐾) ∈ ℕ)
49 lcmgcdlem 15366 . . . . . . . . . . . . . . 15 (((abs‘𝑀) ∈ ℕ ∧ (abs‘𝑁) ∈ ℕ) → ((((abs‘𝑀) lcm (abs‘𝑁)) · ((abs‘𝑀) gcd (abs‘𝑁))) = (abs‘((abs‘𝑀) · (abs‘𝑁))) ∧ (((abs‘𝐾) ∈ ℕ ∧ ((abs‘𝑀) ∥ (abs‘𝐾) ∧ (abs‘𝑁) ∥ (abs‘𝐾))) → ((abs‘𝑀) lcm (abs‘𝑁)) ∥ (abs‘𝐾))))
5049simprd 478 . . . . . . . . . . . . . 14 (((abs‘𝑀) ∈ ℕ ∧ (abs‘𝑁) ∈ ℕ) → (((abs‘𝐾) ∈ ℕ ∧ ((abs‘𝑀) ∥ (abs‘𝐾) ∧ (abs‘𝑁) ∥ (abs‘𝐾))) → ((abs‘𝑀) lcm (abs‘𝑁)) ∥ (abs‘𝐾)))
5148, 50sylani 687 . . . . . . . . . . . . 13 (((abs‘𝑀) ∈ ℕ ∧ (abs‘𝑁) ∈ ℕ) → (((𝐾 ∈ ℤ ∧ 𝐾 ≠ 0) ∧ ((abs‘𝑀) ∥ (abs‘𝐾) ∧ (abs‘𝑁) ∥ (abs‘𝐾))) → ((abs‘𝑀) lcm (abs‘𝑁)) ∥ (abs‘𝐾)))
5246, 47, 51syl2an 493 . . . . . . . . . . . 12 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (((𝐾 ∈ ℤ ∧ 𝐾 ≠ 0) ∧ ((abs‘𝑀) ∥ (abs‘𝐾) ∧ (abs‘𝑁) ∥ (abs‘𝐾))) → ((abs‘𝑀) lcm (abs‘𝑁)) ∥ (abs‘𝐾)))
5352expdimp 452 . . . . . . . . . . 11 ((((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → (((abs‘𝑀) ∥ (abs‘𝐾) ∧ (abs‘𝑁) ∥ (abs‘𝐾)) → ((abs‘𝑀) lcm (abs‘𝑁)) ∥ (abs‘𝐾)))
54 dvdsabsb 15048 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀𝐾𝑀 ∥ (abs‘𝐾)))
55 zabscl 14097 . . . . . . . . . . . . . . . . . . . 20 (𝐾 ∈ ℤ → (abs‘𝐾) ∈ ℤ)
56 absdvdsb 15047 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ ℤ ∧ (abs‘𝐾) ∈ ℤ) → (𝑀 ∥ (abs‘𝐾) ↔ (abs‘𝑀) ∥ (abs‘𝐾)))
5755, 56sylan2 490 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 ∥ (abs‘𝐾) ↔ (abs‘𝑀) ∥ (abs‘𝐾)))
5854, 57bitrd 268 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀𝐾 ↔ (abs‘𝑀) ∥ (abs‘𝐾)))
5958adantlr 751 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → (𝑀𝐾 ↔ (abs‘𝑀) ∥ (abs‘𝐾)))
60 dvdsabsb 15048 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁𝐾𝑁 ∥ (abs‘𝐾)))
61 absdvdsb 15047 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℤ ∧ (abs‘𝐾) ∈ ℤ) → (𝑁 ∥ (abs‘𝐾) ↔ (abs‘𝑁) ∥ (abs‘𝐾)))
6255, 61sylan2 490 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 ∥ (abs‘𝐾) ↔ (abs‘𝑁) ∥ (abs‘𝐾)))
6360, 62bitrd 268 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁𝐾 ↔ (abs‘𝑁) ∥ (abs‘𝐾)))
6463adantll 750 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → (𝑁𝐾 ↔ (abs‘𝑁) ∥ (abs‘𝐾)))
6559, 64anbi12d 747 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → ((𝑀𝐾𝑁𝐾) ↔ ((abs‘𝑀) ∥ (abs‘𝐾) ∧ (abs‘𝑁) ∥ (abs‘𝐾))))
6665bicomd 213 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → (((abs‘𝑀) ∥ (abs‘𝐾) ∧ (abs‘𝑁) ∥ (abs‘𝐾)) ↔ (𝑀𝐾𝑁𝐾)))
67 lcmabs 15365 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) lcm (abs‘𝑁)) = (𝑀 lcm 𝑁))
6867breq1d 4695 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((abs‘𝑀) lcm (abs‘𝑁)) ∥ (abs‘𝐾) ↔ (𝑀 lcm 𝑁) ∥ (abs‘𝐾)))
6968adantr 480 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → (((abs‘𝑀) lcm (abs‘𝑁)) ∥ (abs‘𝐾) ↔ (𝑀 lcm 𝑁) ∥ (abs‘𝐾)))
70 dvdsabsb 15048 . . . . . . . . . . . . . . . . 17 (((𝑀 lcm 𝑁) ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑀 lcm 𝑁) ∥ 𝐾 ↔ (𝑀 lcm 𝑁) ∥ (abs‘𝐾)))
7130, 70sylan 487 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → ((𝑀 lcm 𝑁) ∥ 𝐾 ↔ (𝑀 lcm 𝑁) ∥ (abs‘𝐾)))
7269, 71bitr4d 271 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → (((abs‘𝑀) lcm (abs‘𝑁)) ∥ (abs‘𝐾) ↔ (𝑀 lcm 𝑁) ∥ 𝐾))
7366, 72imbi12d 333 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → ((((abs‘𝑀) ∥ (abs‘𝐾) ∧ (abs‘𝑁) ∥ (abs‘𝐾)) → ((abs‘𝑀) lcm (abs‘𝑁)) ∥ (abs‘𝐾)) ↔ ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾)))
7473adantrr 753 . . . . . . . . . . . . 13 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → ((((abs‘𝑀) ∥ (abs‘𝐾) ∧ (abs‘𝑁) ∥ (abs‘𝐾)) → ((abs‘𝑀) lcm (abs‘𝑁)) ∥ (abs‘𝐾)) ↔ ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾)))
7574adantllr 755 . . . . . . . . . . . 12 ((((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → ((((abs‘𝑀) ∥ (abs‘𝐾) ∧ (abs‘𝑁) ∥ (abs‘𝐾)) → ((abs‘𝑀) lcm (abs‘𝑁)) ∥ (abs‘𝐾)) ↔ ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾)))
7675adantlrr 757 . . . . . . . . . . 11 ((((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → ((((abs‘𝑀) ∥ (abs‘𝐾) ∧ (abs‘𝑁) ∥ (abs‘𝐾)) → ((abs‘𝑀) lcm (abs‘𝑁)) ∥ (abs‘𝐾)) ↔ ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾)))
7753, 76mpbid 222 . . . . . . . . . 10 ((((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾))
7877anassrs 681 . . . . . . . . 9 (((((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝐾 ∈ ℤ) ∧ 𝐾 ≠ 0) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾))
7945, 78pm2.61dane 2910 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝐾 ∈ ℤ) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾))
8079ex 449 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝐾 ∈ ℤ → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾)))
8180an4s 886 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (𝐾 ∈ ℤ → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾)))
8228, 81sylan2br 492 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝐾 ∈ ℤ → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾)))
8382impancom 455 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → (¬ (𝑀 = 0 ∨ 𝑁 = 0) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾)))
84833impa 1278 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (¬ (𝑀 = 0 ∨ 𝑁 = 0) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾)))
85843comr 1290 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑀 = 0 ∨ 𝑁 = 0) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾)))
8616, 27, 85ecase3d 1003 1 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823   class class class wbr 4685  cfv 5926  (class class class)co 6690  0cc0 9974   · cmul 9979  cn 11058  cz 11415  abscabs 14018  cdvds 15027   gcd cgcd 15263   lcm clcm 15348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-dvds 15028  df-gcd 15264  df-lcm 15350
This theorem is referenced by:  lcmdvdsb  15373  lcmftp  15396  lcmfunsnlem1  15397  lcmfunsnlem2lem1  15398  nzin  38834
  Copyright terms: Public domain W3C validator