Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcmcom Structured version   Visualization version   GIF version

Theorem lcmcom 15513
 Description: The lcm operator is commutative. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Proof shortened by AV, 16-Sep-2020.)
Assertion
Ref Expression
lcmcom ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) = (𝑁 lcm 𝑀))

Proof of Theorem lcmcom
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 orcom 850 . . 3 ((𝑀 = 0 ∨ 𝑁 = 0) ↔ (𝑁 = 0 ∨ 𝑀 = 0))
2 ancom 452 . . . . 5 ((𝑀𝑛𝑁𝑛) ↔ (𝑁𝑛𝑀𝑛))
32rabbii 3334 . . . 4 {𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)} = {𝑛 ∈ ℕ ∣ (𝑁𝑛𝑀𝑛)}
43infeq1i 8539 . . 3 inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)}, ℝ, < ) = inf({𝑛 ∈ ℕ ∣ (𝑁𝑛𝑀𝑛)}, ℝ, < )
51, 4ifbieq2i 4247 . 2 if((𝑀 = 0 ∨ 𝑁 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)}, ℝ, < )) = if((𝑁 = 0 ∨ 𝑀 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑁𝑛𝑀𝑛)}, ℝ, < ))
6 lcmval 15512 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) = if((𝑀 = 0 ∨ 𝑁 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)}, ℝ, < )))
7 lcmval 15512 . . 3 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 lcm 𝑀) = if((𝑁 = 0 ∨ 𝑀 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑁𝑛𝑀𝑛)}, ℝ, < )))
87ancoms 455 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 lcm 𝑀) = if((𝑁 = 0 ∨ 𝑀 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑁𝑛𝑀𝑛)}, ℝ, < )))
95, 6, 83eqtr4a 2830 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) = (𝑁 lcm 𝑀))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382   ∨ wo 826   = wceq 1630   ∈ wcel 2144  {crab 3064  ifcif 4223   class class class wbr 4784  (class class class)co 6792  infcinf 8502  ℝcr 10136  0cc0 10137   < clt 10275  ℕcn 11221  ℤcz 11578   ∥ cdvds 15188   lcm clcm 15508 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-mulcl 10199  ax-i2m1 10205  ax-pre-lttri 10211  ax-pre-lttrn 10212 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-br 4785  df-opab 4845  df-mpt 4862  df-id 5157  df-po 5170  df-so 5171  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-sup 8503  df-inf 8504  df-pnf 10277  df-mnf 10278  df-ltxr 10280  df-lcm 15510 This theorem is referenced by:  dvdslcm  15518  lcmeq0  15520  lcmcl  15521  lcmneg  15523  neglcm  15524  lcmgcd  15527  lcmdvds  15528  lcmftp  15556  lcmfunsnlem2  15560  lcmfunsnlem  15561  lcmf2a3a4e12  15567
 Copyright terms: Public domain W3C validator