![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lclkrlem2x | Structured version Visualization version GIF version |
Description: Lemma for lclkr 37342. Eliminate by cases the hypotheses of lclkrlem2u 37336, lclkrlem2u 37336 and lclkrlem2w 37338. (Contributed by NM, 18-Jan-2015.) |
Ref | Expression |
---|---|
lclkrlem2x.l | ⊢ 𝐿 = (LKer‘𝑈) |
lclkrlem2x.h | ⊢ 𝐻 = (LHyp‘𝐾) |
lclkrlem2x.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
lclkrlem2x.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
lclkrlem2x.v | ⊢ 𝑉 = (Base‘𝑈) |
lclkrlem2x.f | ⊢ 𝐹 = (LFnl‘𝑈) |
lclkrlem2x.d | ⊢ 𝐷 = (LDual‘𝑈) |
lclkrlem2x.p | ⊢ + = (+g‘𝐷) |
lclkrlem2x.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
lclkrlem2x.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
lclkrlem2x.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
lclkrlem2x.e | ⊢ (𝜑 → 𝐸 ∈ 𝐹) |
lclkrlem2x.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
lclkrlem2x.le | ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) |
lclkrlem2x.lg | ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) |
Ref | Expression |
---|---|
lclkrlem2x | ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2933 | . . 3 ⊢ (((𝐸 + 𝐺)‘𝑋) ≠ (0g‘(Scalar‘𝑈)) ↔ ¬ ((𝐸 + 𝐺)‘𝑋) = (0g‘(Scalar‘𝑈))) | |
2 | lclkrlem2x.v | . . . 4 ⊢ 𝑉 = (Base‘𝑈) | |
3 | eqid 2760 | . . . 4 ⊢ ( ·𝑠 ‘𝑈) = ( ·𝑠 ‘𝑈) | |
4 | eqid 2760 | . . . 4 ⊢ (Scalar‘𝑈) = (Scalar‘𝑈) | |
5 | eqid 2760 | . . . 4 ⊢ (.r‘(Scalar‘𝑈)) = (.r‘(Scalar‘𝑈)) | |
6 | eqid 2760 | . . . 4 ⊢ (0g‘(Scalar‘𝑈)) = (0g‘(Scalar‘𝑈)) | |
7 | eqid 2760 | . . . 4 ⊢ (invr‘(Scalar‘𝑈)) = (invr‘(Scalar‘𝑈)) | |
8 | eqid 2760 | . . . 4 ⊢ (-g‘𝑈) = (-g‘𝑈) | |
9 | lclkrlem2x.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑈) | |
10 | lclkrlem2x.d | . . . 4 ⊢ 𝐷 = (LDual‘𝑈) | |
11 | lclkrlem2x.p | . . . 4 ⊢ + = (+g‘𝐷) | |
12 | lclkrlem2x.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
13 | 12 | adantr 472 | . . . 4 ⊢ ((𝜑 ∧ ((𝐸 + 𝐺)‘𝑋) ≠ (0g‘(Scalar‘𝑈))) → 𝑋 ∈ 𝑉) |
14 | lclkrlem2x.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
15 | 14 | adantr 472 | . . . 4 ⊢ ((𝜑 ∧ ((𝐸 + 𝐺)‘𝑋) ≠ (0g‘(Scalar‘𝑈))) → 𝑌 ∈ 𝑉) |
16 | lclkrlem2x.e | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ 𝐹) | |
17 | 16 | adantr 472 | . . . 4 ⊢ ((𝜑 ∧ ((𝐸 + 𝐺)‘𝑋) ≠ (0g‘(Scalar‘𝑈))) → 𝐸 ∈ 𝐹) |
18 | lclkrlem2x.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
19 | 18 | adantr 472 | . . . 4 ⊢ ((𝜑 ∧ ((𝐸 + 𝐺)‘𝑋) ≠ (0g‘(Scalar‘𝑈))) → 𝐺 ∈ 𝐹) |
20 | eqid 2760 | . . . 4 ⊢ (LSpan‘𝑈) = (LSpan‘𝑈) | |
21 | lclkrlem2x.l | . . . 4 ⊢ 𝐿 = (LKer‘𝑈) | |
22 | lclkrlem2x.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
23 | lclkrlem2x.o | . . . 4 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
24 | lclkrlem2x.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
25 | eqid 2760 | . . . 4 ⊢ (LSSum‘𝑈) = (LSSum‘𝑈) | |
26 | lclkrlem2x.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
27 | 26 | adantr 472 | . . . 4 ⊢ ((𝜑 ∧ ((𝐸 + 𝐺)‘𝑋) ≠ (0g‘(Scalar‘𝑈))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
28 | lclkrlem2x.le | . . . . 5 ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) | |
29 | 28 | adantr 472 | . . . 4 ⊢ ((𝜑 ∧ ((𝐸 + 𝐺)‘𝑋) ≠ (0g‘(Scalar‘𝑈))) → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) |
30 | lclkrlem2x.lg | . . . . 5 ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) | |
31 | 30 | adantr 472 | . . . 4 ⊢ ((𝜑 ∧ ((𝐸 + 𝐺)‘𝑋) ≠ (0g‘(Scalar‘𝑈))) → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) |
32 | simpr 479 | . . . 4 ⊢ ((𝜑 ∧ ((𝐸 + 𝐺)‘𝑋) ≠ (0g‘(Scalar‘𝑈))) → ((𝐸 + 𝐺)‘𝑋) ≠ (0g‘(Scalar‘𝑈))) | |
33 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 20, 21, 22, 23, 24, 25, 27, 29, 31, 32 | lclkrlem2u 37336 | . . 3 ⊢ ((𝜑 ∧ ((𝐸 + 𝐺)‘𝑋) ≠ (0g‘(Scalar‘𝑈))) → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) |
34 | 1, 33 | sylan2br 494 | . 2 ⊢ ((𝜑 ∧ ¬ ((𝐸 + 𝐺)‘𝑋) = (0g‘(Scalar‘𝑈))) → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) |
35 | df-ne 2933 | . . 3 ⊢ (((𝐸 + 𝐺)‘𝑌) ≠ (0g‘(Scalar‘𝑈)) ↔ ¬ ((𝐸 + 𝐺)‘𝑌) = (0g‘(Scalar‘𝑈))) | |
36 | 12 | adantr 472 | . . . 4 ⊢ ((𝜑 ∧ ((𝐸 + 𝐺)‘𝑌) ≠ (0g‘(Scalar‘𝑈))) → 𝑋 ∈ 𝑉) |
37 | 14 | adantr 472 | . . . 4 ⊢ ((𝜑 ∧ ((𝐸 + 𝐺)‘𝑌) ≠ (0g‘(Scalar‘𝑈))) → 𝑌 ∈ 𝑉) |
38 | 16 | adantr 472 | . . . 4 ⊢ ((𝜑 ∧ ((𝐸 + 𝐺)‘𝑌) ≠ (0g‘(Scalar‘𝑈))) → 𝐸 ∈ 𝐹) |
39 | 18 | adantr 472 | . . . 4 ⊢ ((𝜑 ∧ ((𝐸 + 𝐺)‘𝑌) ≠ (0g‘(Scalar‘𝑈))) → 𝐺 ∈ 𝐹) |
40 | 26 | adantr 472 | . . . 4 ⊢ ((𝜑 ∧ ((𝐸 + 𝐺)‘𝑌) ≠ (0g‘(Scalar‘𝑈))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
41 | 28 | adantr 472 | . . . 4 ⊢ ((𝜑 ∧ ((𝐸 + 𝐺)‘𝑌) ≠ (0g‘(Scalar‘𝑈))) → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) |
42 | 30 | adantr 472 | . . . 4 ⊢ ((𝜑 ∧ ((𝐸 + 𝐺)‘𝑌) ≠ (0g‘(Scalar‘𝑈))) → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) |
43 | simpr 479 | . . . 4 ⊢ ((𝜑 ∧ ((𝐸 + 𝐺)‘𝑌) ≠ (0g‘(Scalar‘𝑈))) → ((𝐸 + 𝐺)‘𝑌) ≠ (0g‘(Scalar‘𝑈))) | |
44 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 36, 37, 38, 39, 20, 21, 22, 23, 24, 25, 40, 41, 42, 43 | lclkrlem2t 37335 | . . 3 ⊢ ((𝜑 ∧ ((𝐸 + 𝐺)‘𝑌) ≠ (0g‘(Scalar‘𝑈))) → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) |
45 | 35, 44 | sylan2br 494 | . 2 ⊢ ((𝜑 ∧ ¬ ((𝐸 + 𝐺)‘𝑌) = (0g‘(Scalar‘𝑈))) → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) |
46 | 12 | adantr 472 | . . 3 ⊢ ((𝜑 ∧ (((𝐸 + 𝐺)‘𝑋) = (0g‘(Scalar‘𝑈)) ∧ ((𝐸 + 𝐺)‘𝑌) = (0g‘(Scalar‘𝑈)))) → 𝑋 ∈ 𝑉) |
47 | 14 | adantr 472 | . . 3 ⊢ ((𝜑 ∧ (((𝐸 + 𝐺)‘𝑋) = (0g‘(Scalar‘𝑈)) ∧ ((𝐸 + 𝐺)‘𝑌) = (0g‘(Scalar‘𝑈)))) → 𝑌 ∈ 𝑉) |
48 | 16 | adantr 472 | . . 3 ⊢ ((𝜑 ∧ (((𝐸 + 𝐺)‘𝑋) = (0g‘(Scalar‘𝑈)) ∧ ((𝐸 + 𝐺)‘𝑌) = (0g‘(Scalar‘𝑈)))) → 𝐸 ∈ 𝐹) |
49 | 18 | adantr 472 | . . 3 ⊢ ((𝜑 ∧ (((𝐸 + 𝐺)‘𝑋) = (0g‘(Scalar‘𝑈)) ∧ ((𝐸 + 𝐺)‘𝑌) = (0g‘(Scalar‘𝑈)))) → 𝐺 ∈ 𝐹) |
50 | 26 | adantr 472 | . . 3 ⊢ ((𝜑 ∧ (((𝐸 + 𝐺)‘𝑋) = (0g‘(Scalar‘𝑈)) ∧ ((𝐸 + 𝐺)‘𝑌) = (0g‘(Scalar‘𝑈)))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
51 | 28 | adantr 472 | . . 3 ⊢ ((𝜑 ∧ (((𝐸 + 𝐺)‘𝑋) = (0g‘(Scalar‘𝑈)) ∧ ((𝐸 + 𝐺)‘𝑌) = (0g‘(Scalar‘𝑈)))) → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) |
52 | 30 | adantr 472 | . . 3 ⊢ ((𝜑 ∧ (((𝐸 + 𝐺)‘𝑋) = (0g‘(Scalar‘𝑈)) ∧ ((𝐸 + 𝐺)‘𝑌) = (0g‘(Scalar‘𝑈)))) → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) |
53 | simprl 811 | . . 3 ⊢ ((𝜑 ∧ (((𝐸 + 𝐺)‘𝑋) = (0g‘(Scalar‘𝑈)) ∧ ((𝐸 + 𝐺)‘𝑌) = (0g‘(Scalar‘𝑈)))) → ((𝐸 + 𝐺)‘𝑋) = (0g‘(Scalar‘𝑈))) | |
54 | simprr 813 | . . 3 ⊢ ((𝜑 ∧ (((𝐸 + 𝐺)‘𝑋) = (0g‘(Scalar‘𝑈)) ∧ ((𝐸 + 𝐺)‘𝑌) = (0g‘(Scalar‘𝑈)))) → ((𝐸 + 𝐺)‘𝑌) = (0g‘(Scalar‘𝑈))) | |
55 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 46, 47, 48, 49, 20, 21, 22, 23, 24, 25, 50, 51, 52, 53, 54 | lclkrlem2w 37338 | . 2 ⊢ ((𝜑 ∧ (((𝐸 + 𝐺)‘𝑋) = (0g‘(Scalar‘𝑈)) ∧ ((𝐸 + 𝐺)‘𝑌) = (0g‘(Scalar‘𝑈)))) → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) |
56 | 34, 45, 55 | pm2.61dda 869 | 1 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ≠ wne 2932 {csn 4321 ‘cfv 6049 (class class class)co 6814 Basecbs 16079 +gcplusg 16163 .rcmulr 16164 Scalarcsca 16166 ·𝑠 cvsca 16167 0gc0g 16322 -gcsg 17645 LSSumclsm 18269 invrcinvr 18891 LSpanclspn 19193 LFnlclfn 34865 LKerclk 34893 LDualcld 34931 HLchlt 35158 LHypclh 35791 DVecHcdvh 36887 ocHcoch 37156 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 ax-riotaBAD 34760 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-fal 1638 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-iin 4675 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-of 7063 df-om 7232 df-1st 7334 df-2nd 7335 df-tpos 7522 df-undef 7569 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-1o 7730 df-oadd 7734 df-er 7913 df-map 8027 df-en 8124 df-dom 8125 df-sdom 8126 df-fin 8127 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-nn 11233 df-2 11291 df-3 11292 df-4 11293 df-5 11294 df-6 11295 df-n0 11505 df-z 11590 df-uz 11900 df-fz 12540 df-struct 16081 df-ndx 16082 df-slot 16083 df-base 16085 df-sets 16086 df-ress 16087 df-plusg 16176 df-mulr 16177 df-sca 16179 df-vsca 16180 df-0g 16324 df-mre 16468 df-mrc 16469 df-acs 16471 df-preset 17149 df-poset 17167 df-plt 17179 df-lub 17195 df-glb 17196 df-join 17197 df-meet 17198 df-p0 17260 df-p1 17261 df-lat 17267 df-clat 17329 df-mgm 17463 df-sgrp 17505 df-mnd 17516 df-submnd 17557 df-grp 17646 df-minusg 17647 df-sbg 17648 df-subg 17812 df-cntz 17970 df-oppg 17996 df-lsm 18271 df-cmn 18415 df-abl 18416 df-mgp 18710 df-ur 18722 df-ring 18769 df-oppr 18843 df-dvdsr 18861 df-unit 18862 df-invr 18892 df-dvr 18903 df-drng 18971 df-lmod 19087 df-lss 19155 df-lsp 19194 df-lvec 19325 df-lsatoms 34784 df-lshyp 34785 df-lcv 34827 df-lfl 34866 df-lkr 34894 df-ldual 34932 df-oposet 34984 df-ol 34986 df-oml 34987 df-covers 35074 df-ats 35075 df-atl 35106 df-cvlat 35130 df-hlat 35159 df-llines 35305 df-lplanes 35306 df-lvols 35307 df-lines 35308 df-psubsp 35310 df-pmap 35311 df-padd 35603 df-lhyp 35795 df-laut 35796 df-ldil 35911 df-ltrn 35912 df-trl 35967 df-tgrp 36551 df-tendo 36563 df-edring 36565 df-dveca 36811 df-disoa 36838 df-dvech 36888 df-dib 36948 df-dic 36982 df-dih 37038 df-doch 37157 df-djh 37204 |
This theorem is referenced by: lclkrlem2y 37340 |
Copyright terms: Public domain | W3C validator |