Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lclkrlem2s Structured version   Visualization version   GIF version

Theorem lclkrlem2s 37335
 Description: Lemma for lclkr 37343. Thus, the sum has a closed kernel when 𝐵 is zero. (Contributed by NM, 18-Jan-2015.)
Hypotheses
Ref Expression
lclkrlem2m.v 𝑉 = (Base‘𝑈)
lclkrlem2m.t · = ( ·𝑠𝑈)
lclkrlem2m.s 𝑆 = (Scalar‘𝑈)
lclkrlem2m.q × = (.r𝑆)
lclkrlem2m.z 0 = (0g𝑆)
lclkrlem2m.i 𝐼 = (invr𝑆)
lclkrlem2m.m = (-g𝑈)
lclkrlem2m.f 𝐹 = (LFnl‘𝑈)
lclkrlem2m.d 𝐷 = (LDual‘𝑈)
lclkrlem2m.p + = (+g𝐷)
lclkrlem2m.x (𝜑𝑋𝑉)
lclkrlem2m.y (𝜑𝑌𝑉)
lclkrlem2m.e (𝜑𝐸𝐹)
lclkrlem2m.g (𝜑𝐺𝐹)
lclkrlem2n.n 𝑁 = (LSpan‘𝑈)
lclkrlem2n.l 𝐿 = (LKer‘𝑈)
lclkrlem2o.h 𝐻 = (LHyp‘𝐾)
lclkrlem2o.o = ((ocH‘𝐾)‘𝑊)
lclkrlem2o.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lclkrlem2o.a = (LSSum‘𝑈)
lclkrlem2o.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
lclkrlem2q.le (𝜑 → (𝐿𝐸) = ( ‘{𝑋}))
lclkrlem2q.lg (𝜑 → (𝐿𝐺) = ( ‘{𝑌}))
lclkrlem2q.b 𝐵 = (𝑋 ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌))
lclkrlem2q.n (𝜑 → ((𝐸 + 𝐺)‘𝑌) ≠ 0 )
lclkrlem2r.bn (𝜑𝐵 = (0g𝑈))
Assertion
Ref Expression
lclkrlem2s (𝜑 → ( ‘( ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺)))

Proof of Theorem lclkrlem2s
StepHypRef Expression
1 lclkrlem2o.k . . . . . 6 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 lclkrlem2m.y . . . . . . . 8 (𝜑𝑌𝑉)
32snssd 4476 . . . . . . 7 (𝜑 → {𝑌} ⊆ 𝑉)
4 lclkrlem2o.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
5 eqid 2771 . . . . . . . 8 ((DIsoH‘𝐾)‘𝑊) = ((DIsoH‘𝐾)‘𝑊)
6 lclkrlem2o.u . . . . . . . 8 𝑈 = ((DVecH‘𝐾)‘𝑊)
7 lclkrlem2m.v . . . . . . . 8 𝑉 = (Base‘𝑈)
8 lclkrlem2o.o . . . . . . . 8 = ((ocH‘𝐾)‘𝑊)
94, 5, 6, 7, 8dochcl 37163 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ {𝑌} ⊆ 𝑉) → ( ‘{𝑌}) ∈ ran ((DIsoH‘𝐾)‘𝑊))
101, 3, 9syl2anc 573 . . . . . 6 (𝜑 → ( ‘{𝑌}) ∈ ran ((DIsoH‘𝐾)‘𝑊))
114, 5, 8dochoc 37177 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ( ‘{𝑌}) ∈ ran ((DIsoH‘𝐾)‘𝑊)) → ( ‘( ‘( ‘{𝑌}))) = ( ‘{𝑌}))
121, 10, 11syl2anc 573 . . . . 5 (𝜑 → ( ‘( ‘( ‘{𝑌}))) = ( ‘{𝑌}))
1312ad2antrr 705 . . . 4 (((𝜑 ∧ (𝐿𝐺) ∈ (LSHyp‘𝑈)) ∧ (𝐿‘(𝐸 + 𝐺)) ∈ (LSHyp‘𝑈)) → ( ‘( ‘( ‘{𝑌}))) = ( ‘{𝑌}))
14 lclkrlem2m.t . . . . . . . . . 10 · = ( ·𝑠𝑈)
15 lclkrlem2m.s . . . . . . . . . 10 𝑆 = (Scalar‘𝑈)
16 lclkrlem2m.q . . . . . . . . . 10 × = (.r𝑆)
17 lclkrlem2m.z . . . . . . . . . 10 0 = (0g𝑆)
18 lclkrlem2m.i . . . . . . . . . 10 𝐼 = (invr𝑆)
19 lclkrlem2m.m . . . . . . . . . 10 = (-g𝑈)
20 lclkrlem2m.f . . . . . . . . . 10 𝐹 = (LFnl‘𝑈)
21 lclkrlem2m.d . . . . . . . . . 10 𝐷 = (LDual‘𝑈)
22 lclkrlem2m.p . . . . . . . . . 10 + = (+g𝐷)
23 lclkrlem2m.x . . . . . . . . . 10 (𝜑𝑋𝑉)
24 lclkrlem2m.e . . . . . . . . . 10 (𝜑𝐸𝐹)
25 lclkrlem2m.g . . . . . . . . . 10 (𝜑𝐺𝐹)
26 lclkrlem2n.n . . . . . . . . . 10 𝑁 = (LSpan‘𝑈)
27 lclkrlem2n.l . . . . . . . . . 10 𝐿 = (LKer‘𝑈)
28 lclkrlem2o.a . . . . . . . . . 10 = (LSSum‘𝑈)
29 lclkrlem2q.le . . . . . . . . . 10 (𝜑 → (𝐿𝐸) = ( ‘{𝑋}))
30 lclkrlem2q.lg . . . . . . . . . 10 (𝜑 → (𝐿𝐺) = ( ‘{𝑌}))
31 lclkrlem2q.b . . . . . . . . . 10 𝐵 = (𝑋 ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌))
32 lclkrlem2q.n . . . . . . . . . 10 (𝜑 → ((𝐸 + 𝐺)‘𝑌) ≠ 0 )
33 lclkrlem2r.bn . . . . . . . . . 10 (𝜑𝐵 = (0g𝑈))
347, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 2, 24, 25, 26, 27, 4, 8, 6, 28, 1, 29, 30, 31, 32, 33lclkrlem2r 37334 . . . . . . . . 9 (𝜑 → (𝐿𝐺) ⊆ (𝐿‘(𝐸 + 𝐺)))
3534ad2antrr 705 . . . . . . . 8 (((𝜑 ∧ (𝐿𝐺) ∈ (LSHyp‘𝑈)) ∧ (𝐿‘(𝐸 + 𝐺)) ∈ (LSHyp‘𝑈)) → (𝐿𝐺) ⊆ (𝐿‘(𝐸 + 𝐺)))
36 eqid 2771 . . . . . . . . 9 (LSHyp‘𝑈) = (LSHyp‘𝑈)
374, 6, 1dvhlvec 36919 . . . . . . . . . 10 (𝜑𝑈 ∈ LVec)
3837ad2antrr 705 . . . . . . . . 9 (((𝜑 ∧ (𝐿𝐺) ∈ (LSHyp‘𝑈)) ∧ (𝐿‘(𝐸 + 𝐺)) ∈ (LSHyp‘𝑈)) → 𝑈 ∈ LVec)
39 simplr 752 . . . . . . . . 9 (((𝜑 ∧ (𝐿𝐺) ∈ (LSHyp‘𝑈)) ∧ (𝐿‘(𝐸 + 𝐺)) ∈ (LSHyp‘𝑈)) → (𝐿𝐺) ∈ (LSHyp‘𝑈))
40 simpr 471 . . . . . . . . 9 (((𝜑 ∧ (𝐿𝐺) ∈ (LSHyp‘𝑈)) ∧ (𝐿‘(𝐸 + 𝐺)) ∈ (LSHyp‘𝑈)) → (𝐿‘(𝐸 + 𝐺)) ∈ (LSHyp‘𝑈))
4136, 38, 39, 40lshpcmp 34797 . . . . . . . 8 (((𝜑 ∧ (𝐿𝐺) ∈ (LSHyp‘𝑈)) ∧ (𝐿‘(𝐸 + 𝐺)) ∈ (LSHyp‘𝑈)) → ((𝐿𝐺) ⊆ (𝐿‘(𝐸 + 𝐺)) ↔ (𝐿𝐺) = (𝐿‘(𝐸 + 𝐺))))
4235, 41mpbid 222 . . . . . . 7 (((𝜑 ∧ (𝐿𝐺) ∈ (LSHyp‘𝑈)) ∧ (𝐿‘(𝐸 + 𝐺)) ∈ (LSHyp‘𝑈)) → (𝐿𝐺) = (𝐿‘(𝐸 + 𝐺)))
4330ad2antrr 705 . . . . . . 7 (((𝜑 ∧ (𝐿𝐺) ∈ (LSHyp‘𝑈)) ∧ (𝐿‘(𝐸 + 𝐺)) ∈ (LSHyp‘𝑈)) → (𝐿𝐺) = ( ‘{𝑌}))
4442, 43eqtr3d 2807 . . . . . 6 (((𝜑 ∧ (𝐿𝐺) ∈ (LSHyp‘𝑈)) ∧ (𝐿‘(𝐸 + 𝐺)) ∈ (LSHyp‘𝑈)) → (𝐿‘(𝐸 + 𝐺)) = ( ‘{𝑌}))
4544fveq2d 6337 . . . . 5 (((𝜑 ∧ (𝐿𝐺) ∈ (LSHyp‘𝑈)) ∧ (𝐿‘(𝐸 + 𝐺)) ∈ (LSHyp‘𝑈)) → ( ‘(𝐿‘(𝐸 + 𝐺))) = ( ‘( ‘{𝑌})))
4645fveq2d 6337 . . . 4 (((𝜑 ∧ (𝐿𝐺) ∈ (LSHyp‘𝑈)) ∧ (𝐿‘(𝐸 + 𝐺)) ∈ (LSHyp‘𝑈)) → ( ‘( ‘(𝐿‘(𝐸 + 𝐺)))) = ( ‘( ‘( ‘{𝑌}))))
4713, 46, 443eqtr4d 2815 . . 3 (((𝜑 ∧ (𝐿𝐺) ∈ (LSHyp‘𝑈)) ∧ (𝐿‘(𝐸 + 𝐺)) ∈ (LSHyp‘𝑈)) → ( ‘( ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺)))
484, 6, 8, 7, 1dochoc1 37171 . . . . 5 (𝜑 → ( ‘( 𝑉)) = 𝑉)
4948ad2antrr 705 . . . 4 (((𝜑 ∧ (𝐿𝐺) ∈ (LSHyp‘𝑈)) ∧ (𝐿‘(𝐸 + 𝐺)) = 𝑉) → ( ‘( 𝑉)) = 𝑉)
50 simpr 471 . . . . . 6 (((𝜑 ∧ (𝐿𝐺) ∈ (LSHyp‘𝑈)) ∧ (𝐿‘(𝐸 + 𝐺)) = 𝑉) → (𝐿‘(𝐸 + 𝐺)) = 𝑉)
5150fveq2d 6337 . . . . 5 (((𝜑 ∧ (𝐿𝐺) ∈ (LSHyp‘𝑈)) ∧ (𝐿‘(𝐸 + 𝐺)) = 𝑉) → ( ‘(𝐿‘(𝐸 + 𝐺))) = ( 𝑉))
5251fveq2d 6337 . . . 4 (((𝜑 ∧ (𝐿𝐺) ∈ (LSHyp‘𝑈)) ∧ (𝐿‘(𝐸 + 𝐺)) = 𝑉) → ( ‘( ‘(𝐿‘(𝐸 + 𝐺)))) = ( ‘( 𝑉)))
5349, 52, 503eqtr4d 2815 . . 3 (((𝜑 ∧ (𝐿𝐺) ∈ (LSHyp‘𝑈)) ∧ (𝐿‘(𝐸 + 𝐺)) = 𝑉) → ( ‘( ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺)))
544, 6, 1dvhlmod 36920 . . . . . 6 (𝜑𝑈 ∈ LMod)
5520, 21, 22, 54, 24, 25ldualvaddcl 34939 . . . . 5 (𝜑 → (𝐸 + 𝐺) ∈ 𝐹)
567, 36, 20, 27, 37, 55lkrshpor 34916 . . . 4 (𝜑 → ((𝐿‘(𝐸 + 𝐺)) ∈ (LSHyp‘𝑈) ∨ (𝐿‘(𝐸 + 𝐺)) = 𝑉))
5756adantr 466 . . 3 ((𝜑 ∧ (𝐿𝐺) ∈ (LSHyp‘𝑈)) → ((𝐿‘(𝐸 + 𝐺)) ∈ (LSHyp‘𝑈) ∨ (𝐿‘(𝐸 + 𝐺)) = 𝑉))
5847, 53, 57mpjaodan 943 . 2 ((𝜑 ∧ (𝐿𝐺) ∈ (LSHyp‘𝑈)) → ( ‘( ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺)))
5948adantr 466 . . 3 ((𝜑 ∧ (𝐿𝐺) = 𝑉) → ( ‘( 𝑉)) = 𝑉)
607, 20, 27, 54, 55lkrssv 34905 . . . . . . 7 (𝜑 → (𝐿‘(𝐸 + 𝐺)) ⊆ 𝑉)
6160adantr 466 . . . . . 6 ((𝜑 ∧ (𝐿𝐺) = 𝑉) → (𝐿‘(𝐸 + 𝐺)) ⊆ 𝑉)
62 simpr 471 . . . . . . 7 ((𝜑 ∧ (𝐿𝐺) = 𝑉) → (𝐿𝐺) = 𝑉)
6334adantr 466 . . . . . . 7 ((𝜑 ∧ (𝐿𝐺) = 𝑉) → (𝐿𝐺) ⊆ (𝐿‘(𝐸 + 𝐺)))
6462, 63eqsstr3d 3789 . . . . . 6 ((𝜑 ∧ (𝐿𝐺) = 𝑉) → 𝑉 ⊆ (𝐿‘(𝐸 + 𝐺)))
6561, 64eqssd 3769 . . . . 5 ((𝜑 ∧ (𝐿𝐺) = 𝑉) → (𝐿‘(𝐸 + 𝐺)) = 𝑉)
6665fveq2d 6337 . . . 4 ((𝜑 ∧ (𝐿𝐺) = 𝑉) → ( ‘(𝐿‘(𝐸 + 𝐺))) = ( 𝑉))
6766fveq2d 6337 . . 3 ((𝜑 ∧ (𝐿𝐺) = 𝑉) → ( ‘( ‘(𝐿‘(𝐸 + 𝐺)))) = ( ‘( 𝑉)))
6859, 67, 653eqtr4d 2815 . 2 ((𝜑 ∧ (𝐿𝐺) = 𝑉) → ( ‘( ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺)))
697, 36, 20, 27, 37, 25lkrshpor 34916 . 2 (𝜑 → ((𝐿𝐺) ∈ (LSHyp‘𝑈) ∨ (𝐿𝐺) = 𝑉))
7058, 68, 69mpjaodan 943 1 (𝜑 → ( ‘( ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382   ∨ wo 836   = wceq 1631   ∈ wcel 2145   ≠ wne 2943   ⊆ wss 3723  {csn 4317  ran crn 5251  ‘cfv 6030  (class class class)co 6796  Basecbs 16064  +gcplusg 16149  .rcmulr 16150  Scalarcsca 16152   ·𝑠 cvsca 16153  0gc0g 16308  -gcsg 17632  LSSumclsm 18256  invrcinvr 18879  LSpanclspn 19184  LVecclvec 19315  LSHypclsh 34784  LFnlclfn 34866  LKerclk 34894  LDualcld 34932  HLchlt 35159  LHypclh 35793  DVecHcdvh 36888  DIsoHcdih 37038  ocHcoch 37157 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219  ax-riotaBAD 34761 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-iin 4658  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-of 7048  df-om 7217  df-1st 7319  df-2nd 7320  df-tpos 7508  df-undef 7555  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-oadd 7721  df-er 7900  df-map 8015  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-nn 11227  df-2 11285  df-3 11286  df-4 11287  df-5 11288  df-6 11289  df-n0 11500  df-z 11585  df-uz 11894  df-fz 12534  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-sca 16165  df-vsca 16166  df-0g 16310  df-preset 17136  df-poset 17154  df-plt 17166  df-lub 17182  df-glb 17183  df-join 17184  df-meet 17185  df-p0 17247  df-p1 17248  df-lat 17254  df-clat 17316  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-submnd 17544  df-grp 17633  df-minusg 17634  df-sbg 17635  df-subg 17799  df-cntz 17957  df-lsm 18258  df-cmn 18402  df-abl 18403  df-mgp 18698  df-ur 18710  df-ring 18757  df-oppr 18831  df-dvdsr 18849  df-unit 18850  df-invr 18880  df-dvr 18891  df-drng 18959  df-lmod 19075  df-lss 19143  df-lsp 19185  df-lvec 19316  df-lsatoms 34785  df-lshyp 34786  df-lfl 34867  df-lkr 34895  df-ldual 34933  df-oposet 34985  df-ol 34987  df-oml 34988  df-covers 35075  df-ats 35076  df-atl 35107  df-cvlat 35131  df-hlat 35160  df-llines 35307  df-lplanes 35308  df-lvols 35309  df-lines 35310  df-psubsp 35312  df-pmap 35313  df-padd 35605  df-lhyp 35797  df-laut 35798  df-ldil 35913  df-ltrn 35914  df-trl 35969  df-tendo 36565  df-edring 36567  df-disoa 36839  df-dvech 36889  df-dib 36949  df-dic 36983  df-dih 37039  df-doch 37158 This theorem is referenced by:  lclkrlem2t  37336
 Copyright terms: Public domain W3C validator