Step | Hyp | Ref
| Expression |
1 | | lcf1o.v |
. . . . . 6
⊢ 𝑉 = (Base‘𝑈) |
2 | | fvex 6239 |
. . . . . 6
⊢
(Base‘𝑈)
∈ V |
3 | 1, 2 | eqeltri 2726 |
. . . . 5
⊢ 𝑉 ∈ V |
4 | 3 | mptex 6527 |
. . . 4
⊢ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∈ V |
5 | | lcf1o.j |
. . . 4
⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) |
6 | 4, 5 | fnmpti 6060 |
. . 3
⊢ 𝐽 Fn (𝑉 ∖ { 0 }) |
7 | 6 | a1i 11 |
. 2
⊢ (𝜑 → 𝐽 Fn (𝑉 ∖ { 0 })) |
8 | | fvelrnb 6282 |
. . . . 5
⊢ (𝐽 Fn (𝑉 ∖ { 0 }) → (𝑔 ∈ ran 𝐽 ↔ ∃𝑧 ∈ (𝑉 ∖ { 0 })(𝐽‘𝑧) = 𝑔)) |
9 | 7, 8 | syl 17 |
. . . 4
⊢ (𝜑 → (𝑔 ∈ ran 𝐽 ↔ ∃𝑧 ∈ (𝑉 ∖ { 0 })(𝐽‘𝑧) = 𝑔)) |
10 | | lcf1o.h |
. . . . . . . . 9
⊢ 𝐻 = (LHyp‘𝐾) |
11 | | lcf1o.o |
. . . . . . . . 9
⊢ ⊥ =
((ocH‘𝐾)‘𝑊) |
12 | | lcf1o.u |
. . . . . . . . 9
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
13 | | lcf1o.a |
. . . . . . . . 9
⊢ + =
(+g‘𝑈) |
14 | | lcf1o.t |
. . . . . . . . 9
⊢ · = (
·𝑠 ‘𝑈) |
15 | | lcf1o.s |
. . . . . . . . 9
⊢ 𝑆 = (Scalar‘𝑈) |
16 | | lcf1o.r |
. . . . . . . . 9
⊢ 𝑅 = (Base‘𝑆) |
17 | | lcf1o.z |
. . . . . . . . 9
⊢ 0 =
(0g‘𝑈) |
18 | | lcf1o.f |
. . . . . . . . 9
⊢ 𝐹 = (LFnl‘𝑈) |
19 | | lcf1o.l |
. . . . . . . . 9
⊢ 𝐿 = (LKer‘𝑈) |
20 | | lcf1o.d |
. . . . . . . . 9
⊢ 𝐷 = (LDual‘𝑈) |
21 | | lcf1o.q |
. . . . . . . . 9
⊢ 𝑄 = (0g‘𝐷) |
22 | | lcf1o.c |
. . . . . . . . 9
⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥
‘(𝐿‘𝑓))) = (𝐿‘𝑓)} |
23 | | lcflo.k |
. . . . . . . . . 10
⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
24 | 23 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑉 ∖ { 0 })) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
25 | | simpr 476 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑉 ∖ { 0 })) → 𝑧 ∈ (𝑉 ∖ { 0 })) |
26 | 10, 11, 12, 1, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 5, 24, 25 | lcfrlem8 37155 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑉 ∖ { 0 })) → (𝐽‘𝑧) = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧))))) |
27 | | eqid 2651 |
. . . . . . . . . . . 12
⊢ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))) = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))) |
28 | | sneq 4220 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝑧 → {𝑦} = {𝑧}) |
29 | 28 | fveq2d 6233 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑧 → ( ⊥ ‘{𝑦}) = ( ⊥ ‘{𝑧})) |
30 | | oveq2 6698 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝑧 → (𝑘 · 𝑦) = (𝑘 · 𝑧)) |
31 | 30 | oveq2d 6706 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝑧 → (𝑤 + (𝑘 · 𝑦)) = (𝑤 + (𝑘 · 𝑧))) |
32 | 31 | eqeq2d 2661 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑧 → (𝑣 = (𝑤 + (𝑘 · 𝑦)) ↔ 𝑣 = (𝑤 + (𝑘 · 𝑧)))) |
33 | 29, 32 | rexeqbidv 3183 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑧 → (∃𝑤 ∈ ( ⊥ ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)) ↔ ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))) |
34 | 33 | riotabidv 6653 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑧 → (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦))) = (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))) |
35 | 34 | mpteq2dv 4778 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑧 → (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)))) = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧))))) |
36 | 35 | eqeq2d 2661 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑧 → ((𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))) = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)))) ↔ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))) = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))))) |
37 | 36 | rspcev 3340 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))) = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧))))) → ∃𝑦 ∈ (𝑉 ∖ { 0 })(𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))) = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦))))) |
38 | 25, 27, 37 | sylancl 695 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑉 ∖ { 0 })) → ∃𝑦 ∈ (𝑉 ∖ { 0 })(𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))) = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦))))) |
39 | 38 | olcd 407 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑉 ∖ { 0 })) → ((𝐿‘(𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧))))) = 𝑉 ∨ ∃𝑦 ∈ (𝑉 ∖ { 0 })(𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))) = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)))))) |
40 | 10, 11, 12, 1, 17, 13, 14, 18, 15, 16, 27, 24, 25 | dochflcl 37081 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑉 ∖ { 0 })) → (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))) ∈ 𝐹) |
41 | 10, 11, 12, 1, 13, 14, 15, 16, 17, 18, 19, 22, 24, 40 | lcfl6 37106 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑉 ∖ { 0 })) → ((𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))) ∈ 𝐶 ↔ ((𝐿‘(𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧))))) = 𝑉 ∨ ∃𝑦 ∈ (𝑉 ∖ { 0 })(𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))) = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦))))))) |
42 | 39, 41 | mpbird 247 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑉 ∖ { 0 })) → (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))) ∈ 𝐶) |
43 | 10, 11, 12, 1, 17, 13, 14, 19, 15, 16, 27, 24, 25 | dochsnkr2cl 37080 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑉 ∖ { 0 })) → 𝑧 ∈ (( ⊥ ‘(𝐿‘(𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))))) ∖ { 0 })) |
44 | 10, 11, 12, 1, 17, 18, 19, 24, 40, 43 | dochsnkrlem3 37077 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑉 ∖ { 0 })) → ( ⊥
‘( ⊥ ‘(𝐿‘(𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧))))))) = (𝐿‘(𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))))) |
45 | 10, 11, 12, 1, 17, 18, 19, 24, 40, 43 | dochsnkrlem1 37075 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑉 ∖ { 0 })) → ( ⊥
‘( ⊥ ‘(𝐿‘(𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧))))))) ≠ 𝑉) |
46 | 44, 45 | eqnetrrd 2891 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑉 ∖ { 0 })) → (𝐿‘(𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧))))) ≠ 𝑉) |
47 | 10, 12, 23 | dvhlmod 36716 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑈 ∈ LMod) |
48 | 47 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑉 ∖ { 0 })) → 𝑈 ∈ LMod) |
49 | 1, 18, 19, 20, 21, 48, 40 | lkr0f2 34766 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑉 ∖ { 0 })) → ((𝐿‘(𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧))))) = 𝑉 ↔ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))) = 𝑄)) |
50 | 49 | necon3bid 2867 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑉 ∖ { 0 })) → ((𝐿‘(𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧))))) ≠ 𝑉 ↔ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))) ≠ 𝑄)) |
51 | 46, 50 | mpbid 222 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑉 ∖ { 0 })) → (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))) ≠ 𝑄) |
52 | | eldifsn 4350 |
. . . . . . . . 9
⊢ ((𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))) ∈ (𝐶 ∖ {𝑄}) ↔ ((𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))) ∈ 𝐶 ∧ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))) ≠ 𝑄)) |
53 | 42, 51, 52 | sylanbrc 699 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑉 ∖ { 0 })) → (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))) ∈ (𝐶 ∖ {𝑄})) |
54 | 26, 53 | eqeltrd 2730 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑉 ∖ { 0 })) → (𝐽‘𝑧) ∈ (𝐶 ∖ {𝑄})) |
55 | | eleq1 2718 |
. . . . . . 7
⊢ ((𝐽‘𝑧) = 𝑔 → ((𝐽‘𝑧) ∈ (𝐶 ∖ {𝑄}) ↔ 𝑔 ∈ (𝐶 ∖ {𝑄}))) |
56 | 54, 55 | syl5ibcom 235 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑉 ∖ { 0 })) → ((𝐽‘𝑧) = 𝑔 → 𝑔 ∈ (𝐶 ∖ {𝑄}))) |
57 | 56 | rexlimdva 3060 |
. . . . 5
⊢ (𝜑 → (∃𝑧 ∈ (𝑉 ∖ { 0 })(𝐽‘𝑧) = 𝑔 → 𝑔 ∈ (𝐶 ∖ {𝑄}))) |
58 | | eldifsn 4350 |
. . . . . . . 8
⊢ (𝑔 ∈ (𝐶 ∖ {𝑄}) ↔ (𝑔 ∈ 𝐶 ∧ 𝑔 ≠ 𝑄)) |
59 | | simprl 809 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑔 ∈ 𝐶 ∧ 𝑔 ≠ 𝑄)) → 𝑔 ∈ 𝐶) |
60 | 47 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐶) → 𝑈 ∈ LMod) |
61 | 22 | lcfl1lem 37097 |
. . . . . . . . . . . . . . . 16
⊢ (𝑔 ∈ 𝐶 ↔ (𝑔 ∈ 𝐹 ∧ ( ⊥ ‘( ⊥
‘(𝐿‘𝑔))) = (𝐿‘𝑔))) |
62 | 61 | simplbi 475 |
. . . . . . . . . . . . . . 15
⊢ (𝑔 ∈ 𝐶 → 𝑔 ∈ 𝐹) |
63 | 62 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐶) → 𝑔 ∈ 𝐹) |
64 | 1, 18, 19, 20, 21, 60, 63 | lkr0f2 34766 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐶) → ((𝐿‘𝑔) = 𝑉 ↔ 𝑔 = 𝑄)) |
65 | 64 | necon3bid 2867 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐶) → ((𝐿‘𝑔) ≠ 𝑉 ↔ 𝑔 ≠ 𝑄)) |
66 | 65 | biimprd 238 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐶) → (𝑔 ≠ 𝑄 → (𝐿‘𝑔) ≠ 𝑉)) |
67 | 66 | impr 648 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑔 ∈ 𝐶 ∧ 𝑔 ≠ 𝑄)) → (𝐿‘𝑔) ≠ 𝑉) |
68 | 67 | neneqd 2828 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑔 ∈ 𝐶 ∧ 𝑔 ≠ 𝑄)) → ¬ (𝐿‘𝑔) = 𝑉) |
69 | 23 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑔 ∈ 𝐶 ∧ 𝑔 ≠ 𝑄)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
70 | 62 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝑔 ∈ 𝐶 ∧ 𝑔 ≠ 𝑄) → 𝑔 ∈ 𝐹) |
71 | 70 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑔 ∈ 𝐶 ∧ 𝑔 ≠ 𝑄)) → 𝑔 ∈ 𝐹) |
72 | 10, 11, 12, 1, 13, 14, 15, 16, 17, 18, 19, 22, 69, 71 | lcfl6 37106 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑔 ∈ 𝐶 ∧ 𝑔 ≠ 𝑄)) → (𝑔 ∈ 𝐶 ↔ ((𝐿‘𝑔) = 𝑉 ∨ ∃𝑧 ∈ (𝑉 ∖ { 0 })𝑔 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧))))))) |
73 | 72 | biimpa 500 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑔 ∈ 𝐶 ∧ 𝑔 ≠ 𝑄)) ∧ 𝑔 ∈ 𝐶) → ((𝐿‘𝑔) = 𝑉 ∨ ∃𝑧 ∈ (𝑉 ∖ { 0 })𝑔 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))))) |
74 | 73 | ord 391 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑔 ∈ 𝐶 ∧ 𝑔 ≠ 𝑄)) ∧ 𝑔 ∈ 𝐶) → (¬ (𝐿‘𝑔) = 𝑉 → ∃𝑧 ∈ (𝑉 ∖ { 0 })𝑔 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))))) |
75 | 74 | 3impia 1280 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑔 ∈ 𝐶 ∧ 𝑔 ≠ 𝑄)) ∧ 𝑔 ∈ 𝐶 ∧ ¬ (𝐿‘𝑔) = 𝑉) → ∃𝑧 ∈ (𝑉 ∖ { 0 })𝑔 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧))))) |
76 | 59, 68, 75 | mpd3an23 1466 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑔 ∈ 𝐶 ∧ 𝑔 ≠ 𝑄)) → ∃𝑧 ∈ (𝑉 ∖ { 0 })𝑔 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧))))) |
77 | 58, 76 | sylan2b 491 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑔 ∈ (𝐶 ∖ {𝑄})) → ∃𝑧 ∈ (𝑉 ∖ { 0 })𝑔 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧))))) |
78 | | eqcom 2658 |
. . . . . . . . 9
⊢ ((𝐽‘𝑧) = 𝑔 ↔ 𝑔 = (𝐽‘𝑧)) |
79 | 23 | ad2antrr 762 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑔 ∈ (𝐶 ∖ {𝑄})) ∧ 𝑧 ∈ (𝑉 ∖ { 0 })) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
80 | | simpr 476 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑔 ∈ (𝐶 ∖ {𝑄})) ∧ 𝑧 ∈ (𝑉 ∖ { 0 })) → 𝑧 ∈ (𝑉 ∖ { 0 })) |
81 | 10, 11, 12, 1, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 5, 79, 80 | lcfrlem8 37155 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑔 ∈ (𝐶 ∖ {𝑄})) ∧ 𝑧 ∈ (𝑉 ∖ { 0 })) → (𝐽‘𝑧) = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧))))) |
82 | 81 | eqeq2d 2661 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑔 ∈ (𝐶 ∖ {𝑄})) ∧ 𝑧 ∈ (𝑉 ∖ { 0 })) → (𝑔 = (𝐽‘𝑧) ↔ 𝑔 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))))) |
83 | 78, 82 | syl5bb 272 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑔 ∈ (𝐶 ∖ {𝑄})) ∧ 𝑧 ∈ (𝑉 ∖ { 0 })) → ((𝐽‘𝑧) = 𝑔 ↔ 𝑔 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))))) |
84 | 83 | rexbidva 3078 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑔 ∈ (𝐶 ∖ {𝑄})) → (∃𝑧 ∈ (𝑉 ∖ { 0 })(𝐽‘𝑧) = 𝑔 ↔ ∃𝑧 ∈ (𝑉 ∖ { 0 })𝑔 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑧})𝑣 = (𝑤 + (𝑘 · 𝑧)))))) |
85 | 77, 84 | mpbird 247 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑔 ∈ (𝐶 ∖ {𝑄})) → ∃𝑧 ∈ (𝑉 ∖ { 0 })(𝐽‘𝑧) = 𝑔) |
86 | 85 | ex 449 |
. . . . 5
⊢ (𝜑 → (𝑔 ∈ (𝐶 ∖ {𝑄}) → ∃𝑧 ∈ (𝑉 ∖ { 0 })(𝐽‘𝑧) = 𝑔)) |
87 | 57, 86 | impbid 202 |
. . . 4
⊢ (𝜑 → (∃𝑧 ∈ (𝑉 ∖ { 0 })(𝐽‘𝑧) = 𝑔 ↔ 𝑔 ∈ (𝐶 ∖ {𝑄}))) |
88 | 9, 87 | bitrd 268 |
. . 3
⊢ (𝜑 → (𝑔 ∈ ran 𝐽 ↔ 𝑔 ∈ (𝐶 ∖ {𝑄}))) |
89 | 88 | eqrdv 2649 |
. 2
⊢ (𝜑 → ran 𝐽 = (𝐶 ∖ {𝑄})) |
90 | 23 | ad2antrr 762 |
. . . . 5
⊢ (((𝜑 ∧ (𝑡 ∈ (𝑉 ∖ { 0 }) ∧ 𝑢 ∈ (𝑉 ∖ { 0 }))) ∧ (𝐽‘𝑡) = (𝐽‘𝑢)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
91 | | eqid 2651 |
. . . . 5
⊢ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑡})𝑣 = (𝑤 + (𝑘 · 𝑡)))) = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑡})𝑣 = (𝑤 + (𝑘 · 𝑡)))) |
92 | | eqid 2651 |
. . . . 5
⊢ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑢})𝑣 = (𝑤 + (𝑘 · 𝑢)))) = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑢})𝑣 = (𝑤 + (𝑘 · 𝑢)))) |
93 | | simplrl 817 |
. . . . 5
⊢ (((𝜑 ∧ (𝑡 ∈ (𝑉 ∖ { 0 }) ∧ 𝑢 ∈ (𝑉 ∖ { 0 }))) ∧ (𝐽‘𝑡) = (𝐽‘𝑢)) → 𝑡 ∈ (𝑉 ∖ { 0 })) |
94 | | simplrr 818 |
. . . . 5
⊢ (((𝜑 ∧ (𝑡 ∈ (𝑉 ∖ { 0 }) ∧ 𝑢 ∈ (𝑉 ∖ { 0 }))) ∧ (𝐽‘𝑡) = (𝐽‘𝑢)) → 𝑢 ∈ (𝑉 ∖ { 0 })) |
95 | | simpr 476 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑡 ∈ (𝑉 ∖ { 0 }) ∧ 𝑢 ∈ (𝑉 ∖ { 0 }))) ∧ (𝐽‘𝑡) = (𝐽‘𝑢)) → (𝐽‘𝑡) = (𝐽‘𝑢)) |
96 | 10, 11, 12, 1, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 5, 90, 93 | lcfrlem8 37155 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑡 ∈ (𝑉 ∖ { 0 }) ∧ 𝑢 ∈ (𝑉 ∖ { 0 }))) ∧ (𝐽‘𝑡) = (𝐽‘𝑢)) → (𝐽‘𝑡) = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑡})𝑣 = (𝑤 + (𝑘 · 𝑡))))) |
97 | 10, 11, 12, 1, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 5, 90, 94 | lcfrlem8 37155 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑡 ∈ (𝑉 ∖ { 0 }) ∧ 𝑢 ∈ (𝑉 ∖ { 0 }))) ∧ (𝐽‘𝑡) = (𝐽‘𝑢)) → (𝐽‘𝑢) = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑢})𝑣 = (𝑤 + (𝑘 · 𝑢))))) |
98 | 95, 96, 97 | 3eqtr3d 2693 |
. . . . 5
⊢ (((𝜑 ∧ (𝑡 ∈ (𝑉 ∖ { 0 }) ∧ 𝑢 ∈ (𝑉 ∖ { 0 }))) ∧ (𝐽‘𝑡) = (𝐽‘𝑢)) → (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑡})𝑣 = (𝑤 + (𝑘 · 𝑡)))) = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑢})𝑣 = (𝑤 + (𝑘 · 𝑢))))) |
99 | 10, 11, 12, 1, 13, 14, 15, 16, 17, 18, 19, 90, 91, 92, 93, 94, 98 | lcfl7lem 37105 |
. . . 4
⊢ (((𝜑 ∧ (𝑡 ∈ (𝑉 ∖ { 0 }) ∧ 𝑢 ∈ (𝑉 ∖ { 0 }))) ∧ (𝐽‘𝑡) = (𝐽‘𝑢)) → 𝑡 = 𝑢) |
100 | 99 | ex 449 |
. . 3
⊢ ((𝜑 ∧ (𝑡 ∈ (𝑉 ∖ { 0 }) ∧ 𝑢 ∈ (𝑉 ∖ { 0 }))) → ((𝐽‘𝑡) = (𝐽‘𝑢) → 𝑡 = 𝑢)) |
101 | 100 | ralrimivva 3000 |
. 2
⊢ (𝜑 → ∀𝑡 ∈ (𝑉 ∖ { 0 })∀𝑢 ∈ (𝑉 ∖ { 0 })((𝐽‘𝑡) = (𝐽‘𝑢) → 𝑡 = 𝑢)) |
102 | | dff1o6 6571 |
. 2
⊢ (𝐽:(𝑉 ∖ { 0 })–1-1-onto→(𝐶 ∖ {𝑄}) ↔ (𝐽 Fn (𝑉 ∖ { 0 }) ∧ ran 𝐽 = (𝐶 ∖ {𝑄}) ∧ ∀𝑡 ∈ (𝑉 ∖ { 0 })∀𝑢 ∈ (𝑉 ∖ { 0 })((𝐽‘𝑡) = (𝐽‘𝑢) → 𝑡 = 𝑢))) |
103 | 7, 89, 101, 102 | syl3anbrc 1265 |
1
⊢ (𝜑 → 𝐽:(𝑉 ∖ { 0 })–1-1-onto→(𝐶 ∖ {𝑄})) |