Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfrlem23 Structured version   Visualization version   GIF version

Theorem lcfrlem23 37368
Description: Lemma for lcfr 37388. TODO: this proof was built from other proof pieces that may change 𝑁‘{𝑋, 𝑌} into subspace sum and back unnecessarily, or similar things. (Contributed by NM, 1-Mar-2015.)
Hypotheses
Ref Expression
lcfrlem17.h 𝐻 = (LHyp‘𝐾)
lcfrlem17.o = ((ocH‘𝐾)‘𝑊)
lcfrlem17.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcfrlem17.v 𝑉 = (Base‘𝑈)
lcfrlem17.p + = (+g𝑈)
lcfrlem17.z 0 = (0g𝑈)
lcfrlem17.n 𝑁 = (LSpan‘𝑈)
lcfrlem17.a 𝐴 = (LSAtoms‘𝑈)
lcfrlem17.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
lcfrlem17.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
lcfrlem17.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
lcfrlem17.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
lcfrlem22.b 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)}))
lcfrlem23.s = (LSSum‘𝑈)
Assertion
Ref Expression
lcfrlem23 (𝜑 → (( ‘{𝑋, 𝑌}) 𝐵) = ( ‘{(𝑋 + 𝑌)}))

Proof of Theorem lcfrlem23
StepHypRef Expression
1 lcfrlem22.b . . . . . . 7 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)}))
21fveq2i 6335 . . . . . 6 ( 𝐵) = ( ‘((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)})))
3 lcfrlem17.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
4 eqid 2770 . . . . . . . 8 ((DIsoH‘𝐾)‘𝑊) = ((DIsoH‘𝐾)‘𝑊)
5 lcfrlem17.u . . . . . . . 8 𝑈 = ((DVecH‘𝐾)‘𝑊)
6 lcfrlem17.v . . . . . . . 8 𝑉 = (Base‘𝑈)
7 lcfrlem17.o . . . . . . . 8 = ((ocH‘𝐾)‘𝑊)
8 eqid 2770 . . . . . . . 8 ((joinH‘𝐾)‘𝑊) = ((joinH‘𝐾)‘𝑊)
9 lcfrlem17.k . . . . . . . 8 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
10 lcfrlem17.n . . . . . . . . 9 𝑁 = (LSpan‘𝑈)
11 lcfrlem17.x . . . . . . . . . 10 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
1211eldifad 3733 . . . . . . . . 9 (𝜑𝑋𝑉)
13 lcfrlem17.y . . . . . . . . . 10 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
1413eldifad 3733 . . . . . . . . 9 (𝜑𝑌𝑉)
153, 5, 6, 10, 4, 9, 12, 14dihprrn 37229 . . . . . . . 8 (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ ran ((DIsoH‘𝐾)‘𝑊))
163, 5, 9dvhlmod 36913 . . . . . . . . . . 11 (𝜑𝑈 ∈ LMod)
17 lcfrlem17.p . . . . . . . . . . . 12 + = (+g𝑈)
186, 17lmodvacl 19086 . . . . . . . . . . 11 ((𝑈 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 + 𝑌) ∈ 𝑉)
1916, 12, 14, 18syl3anc 1475 . . . . . . . . . 10 (𝜑 → (𝑋 + 𝑌) ∈ 𝑉)
2019snssd 4473 . . . . . . . . 9 (𝜑 → {(𝑋 + 𝑌)} ⊆ 𝑉)
213, 4, 5, 6, 7dochcl 37156 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ {(𝑋 + 𝑌)} ⊆ 𝑉) → ( ‘{(𝑋 + 𝑌)}) ∈ ran ((DIsoH‘𝐾)‘𝑊))
229, 20, 21syl2anc 565 . . . . . . . 8 (𝜑 → ( ‘{(𝑋 + 𝑌)}) ∈ ran ((DIsoH‘𝐾)‘𝑊))
233, 4, 5, 6, 7, 8, 9, 15, 22dochdmm1 37213 . . . . . . 7 (𝜑 → ( ‘((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)}))) = (( ‘(𝑁‘{𝑋, 𝑌}))((joinH‘𝐾)‘𝑊)( ‘( ‘{(𝑋 + 𝑌)}))))
243, 5, 7, 6, 10, 9, 19dochocsn 37184 . . . . . . . 8 (𝜑 → ( ‘( ‘{(𝑋 + 𝑌)})) = (𝑁‘{(𝑋 + 𝑌)}))
2524oveq2d 6808 . . . . . . 7 (𝜑 → (( ‘(𝑁‘{𝑋, 𝑌}))((joinH‘𝐾)‘𝑊)( ‘( ‘{(𝑋 + 𝑌)}))) = (( ‘(𝑁‘{𝑋, 𝑌}))((joinH‘𝐾)‘𝑊)(𝑁‘{(𝑋 + 𝑌)})))
26 lcfrlem23.s . . . . . . . 8 = (LSSum‘𝑈)
27 prssi 4485 . . . . . . . . . . 11 ((𝑋𝑉𝑌𝑉) → {𝑋, 𝑌} ⊆ 𝑉)
2812, 14, 27syl2anc 565 . . . . . . . . . 10 (𝜑 → {𝑋, 𝑌} ⊆ 𝑉)
296, 10lspssv 19195 . . . . . . . . . 10 ((𝑈 ∈ LMod ∧ {𝑋, 𝑌} ⊆ 𝑉) → (𝑁‘{𝑋, 𝑌}) ⊆ 𝑉)
3016, 28, 29syl2anc 565 . . . . . . . . 9 (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ 𝑉)
313, 4, 5, 6, 7dochcl 37156 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑁‘{𝑋, 𝑌}) ⊆ 𝑉) → ( ‘(𝑁‘{𝑋, 𝑌})) ∈ ran ((DIsoH‘𝐾)‘𝑊))
329, 30, 31syl2anc 565 . . . . . . . 8 (𝜑 → ( ‘(𝑁‘{𝑋, 𝑌})) ∈ ran ((DIsoH‘𝐾)‘𝑊))
333, 5, 6, 26, 10, 4, 8, 9, 32, 19dihjat1 37232 . . . . . . 7 (𝜑 → (( ‘(𝑁‘{𝑋, 𝑌}))((joinH‘𝐾)‘𝑊)(𝑁‘{(𝑋 + 𝑌)})) = (( ‘(𝑁‘{𝑋, 𝑌})) (𝑁‘{(𝑋 + 𝑌)})))
3423, 25, 333eqtrd 2808 . . . . . 6 (𝜑 → ( ‘((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)}))) = (( ‘(𝑁‘{𝑋, 𝑌})) (𝑁‘{(𝑋 + 𝑌)})))
352, 34syl5eq 2816 . . . . 5 (𝜑 → ( 𝐵) = (( ‘(𝑁‘{𝑋, 𝑌})) (𝑁‘{(𝑋 + 𝑌)})))
3635ineq2d 3963 . . . 4 (𝜑 → (((𝑁‘{𝑋}) (𝑁‘{𝑌})) ∩ ( 𝐵)) = (((𝑁‘{𝑋}) (𝑁‘{𝑌})) ∩ (( ‘(𝑁‘{𝑋, 𝑌})) (𝑁‘{(𝑋 + 𝑌)}))))
37 eqid 2770 . . . . . . . 8 (LSubSp‘𝑈) = (LSubSp‘𝑈)
3837lsssssubg 19170 . . . . . . 7 (𝑈 ∈ LMod → (LSubSp‘𝑈) ⊆ (SubGrp‘𝑈))
3916, 38syl 17 . . . . . 6 (𝜑 → (LSubSp‘𝑈) ⊆ (SubGrp‘𝑈))
406, 37, 10lspsncl 19189 . . . . . . . 8 ((𝑈 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈))
4116, 12, 40syl2anc 565 . . . . . . 7 (𝜑 → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈))
426, 37, 10lspsncl 19189 . . . . . . . 8 ((𝑈 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈))
4316, 14, 42syl2anc 565 . . . . . . 7 (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈))
4437, 26lsmcl 19295 . . . . . . 7 ((𝑈 ∈ LMod ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈) ∧ (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈)) → ((𝑁‘{𝑋}) (𝑁‘{𝑌})) ∈ (LSubSp‘𝑈))
4516, 41, 43, 44syl3anc 1475 . . . . . 6 (𝜑 → ((𝑁‘{𝑋}) (𝑁‘{𝑌})) ∈ (LSubSp‘𝑈))
4639, 45sseldd 3751 . . . . 5 (𝜑 → ((𝑁‘{𝑋}) (𝑁‘{𝑌})) ∈ (SubGrp‘𝑈))
473, 5, 6, 37, 7dochlss 37157 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑁‘{𝑋, 𝑌}) ⊆ 𝑉) → ( ‘(𝑁‘{𝑋, 𝑌})) ∈ (LSubSp‘𝑈))
489, 30, 47syl2anc 565 . . . . . 6 (𝜑 → ( ‘(𝑁‘{𝑋, 𝑌})) ∈ (LSubSp‘𝑈))
4939, 48sseldd 3751 . . . . 5 (𝜑 → ( ‘(𝑁‘{𝑋, 𝑌})) ∈ (SubGrp‘𝑈))
506, 37, 10lspsncl 19189 . . . . . . 7 ((𝑈 ∈ LMod ∧ (𝑋 + 𝑌) ∈ 𝑉) → (𝑁‘{(𝑋 + 𝑌)}) ∈ (LSubSp‘𝑈))
5116, 19, 50syl2anc 565 . . . . . 6 (𝜑 → (𝑁‘{(𝑋 + 𝑌)}) ∈ (LSubSp‘𝑈))
5239, 51sseldd 3751 . . . . 5 (𝜑 → (𝑁‘{(𝑋 + 𝑌)}) ∈ (SubGrp‘𝑈))
536, 17, 10, 26lspsntri 19309 . . . . . 6 ((𝑈 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑁‘{(𝑋 + 𝑌)}) ⊆ ((𝑁‘{𝑋}) (𝑁‘{𝑌})))
5416, 12, 14, 53syl3anc 1475 . . . . 5 (𝜑 → (𝑁‘{(𝑋 + 𝑌)}) ⊆ ((𝑁‘{𝑋}) (𝑁‘{𝑌})))
5526lsmmod2 18295 . . . . 5 (((((𝑁‘{𝑋}) (𝑁‘{𝑌})) ∈ (SubGrp‘𝑈) ∧ ( ‘(𝑁‘{𝑋, 𝑌})) ∈ (SubGrp‘𝑈) ∧ (𝑁‘{(𝑋 + 𝑌)}) ∈ (SubGrp‘𝑈)) ∧ (𝑁‘{(𝑋 + 𝑌)}) ⊆ ((𝑁‘{𝑋}) (𝑁‘{𝑌}))) → (((𝑁‘{𝑋}) (𝑁‘{𝑌})) ∩ (( ‘(𝑁‘{𝑋, 𝑌})) (𝑁‘{(𝑋 + 𝑌)}))) = ((((𝑁‘{𝑋}) (𝑁‘{𝑌})) ∩ ( ‘(𝑁‘{𝑋, 𝑌}))) (𝑁‘{(𝑋 + 𝑌)})))
5646, 49, 52, 54, 55syl31anc 1478 . . . 4 (𝜑 → (((𝑁‘{𝑋}) (𝑁‘{𝑌})) ∩ (( ‘(𝑁‘{𝑋, 𝑌})) (𝑁‘{(𝑋 + 𝑌)}))) = ((((𝑁‘{𝑋}) (𝑁‘{𝑌})) ∩ ( ‘(𝑁‘{𝑋, 𝑌}))) (𝑁‘{(𝑋 + 𝑌)})))
576, 10, 26, 16, 12, 14lsmpr 19301 . . . . . . . 8 (𝜑 → (𝑁‘{𝑋, 𝑌}) = ((𝑁‘{𝑋}) (𝑁‘{𝑌})))
5857ineq1d 3962 . . . . . . 7 (𝜑 → ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘(𝑁‘{𝑋, 𝑌}))) = (((𝑁‘{𝑋}) (𝑁‘{𝑌})) ∩ ( ‘(𝑁‘{𝑋, 𝑌}))))
596, 37, 10, 16, 12, 14lspprcl 19190 . . . . . . . 8 (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈))
60 lcfrlem17.z . . . . . . . . 9 0 = (0g𝑈)
613, 5, 37, 60, 7dochnoncon 37194 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈)) → ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘(𝑁‘{𝑋, 𝑌}))) = { 0 })
629, 59, 61syl2anc 565 . . . . . . 7 (𝜑 → ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘(𝑁‘{𝑋, 𝑌}))) = { 0 })
6358, 62eqtr3d 2806 . . . . . 6 (𝜑 → (((𝑁‘{𝑋}) (𝑁‘{𝑌})) ∩ ( ‘(𝑁‘{𝑋, 𝑌}))) = { 0 })
6463oveq1d 6807 . . . . 5 (𝜑 → ((((𝑁‘{𝑋}) (𝑁‘{𝑌})) ∩ ( ‘(𝑁‘{𝑋, 𝑌}))) (𝑁‘{(𝑋 + 𝑌)})) = ({ 0 } (𝑁‘{(𝑋 + 𝑌)})))
6560, 26lsm02 18291 . . . . . 6 ((𝑁‘{(𝑋 + 𝑌)}) ∈ (SubGrp‘𝑈) → ({ 0 } (𝑁‘{(𝑋 + 𝑌)})) = (𝑁‘{(𝑋 + 𝑌)}))
6652, 65syl 17 . . . . 5 (𝜑 → ({ 0 } (𝑁‘{(𝑋 + 𝑌)})) = (𝑁‘{(𝑋 + 𝑌)}))
6764, 66eqtrd 2804 . . . 4 (𝜑 → ((((𝑁‘{𝑋}) (𝑁‘{𝑌})) ∩ ( ‘(𝑁‘{𝑋, 𝑌}))) (𝑁‘{(𝑋 + 𝑌)})) = (𝑁‘{(𝑋 + 𝑌)}))
6836, 56, 673eqtrd 2808 . . 3 (𝜑 → (((𝑁‘{𝑋}) (𝑁‘{𝑌})) ∩ ( 𝐵)) = (𝑁‘{(𝑋 + 𝑌)}))
6968fveq2d 6336 . 2 (𝜑 → ( ‘(((𝑁‘{𝑋}) (𝑁‘{𝑌})) ∩ ( 𝐵))) = ( ‘(𝑁‘{(𝑋 + 𝑌)})))
703, 5, 6, 26, 10, 4, 9, 12, 14dihsmsnrn 37238 . . . 4 (𝜑 → ((𝑁‘{𝑋}) (𝑁‘{𝑌})) ∈ ran ((DIsoH‘𝐾)‘𝑊))
71 lcfrlem17.a . . . . . 6 𝐴 = (LSAtoms‘𝑈)
72 lcfrlem17.ne . . . . . . 7 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
733, 7, 5, 6, 17, 60, 10, 71, 9, 11, 13, 72, 1lcfrlem22 37367 . . . . . 6 (𝜑𝐵𝐴)
746, 71, 16, 73lsatssv 34800 . . . . 5 (𝜑𝐵𝑉)
753, 4, 5, 6, 7dochcl 37156 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐵𝑉) → ( 𝐵) ∈ ran ((DIsoH‘𝐾)‘𝑊))
769, 74, 75syl2anc 565 . . . 4 (𝜑 → ( 𝐵) ∈ ran ((DIsoH‘𝐾)‘𝑊))
773, 4, 5, 6, 7, 8, 9, 70, 76dochdmm1 37213 . . 3 (𝜑 → ( ‘(((𝑁‘{𝑋}) (𝑁‘{𝑌})) ∩ ( 𝐵))) = (( ‘((𝑁‘{𝑋}) (𝑁‘{𝑌})))((joinH‘𝐾)‘𝑊)( ‘( 𝐵))))
7857fveq2d 6336 . . . . 5 (𝜑 → ( ‘(𝑁‘{𝑋, 𝑌})) = ( ‘((𝑁‘{𝑋}) (𝑁‘{𝑌}))))
793, 5, 7, 6, 10, 9, 28dochocsp 37182 . . . . 5 (𝜑 → ( ‘(𝑁‘{𝑋, 𝑌})) = ( ‘{𝑋, 𝑌}))
8078, 79eqtr3d 2806 . . . 4 (𝜑 → ( ‘((𝑁‘{𝑋}) (𝑁‘{𝑌}))) = ( ‘{𝑋, 𝑌}))
813, 5, 4, 71dih1dimat 37133 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐵𝐴) → 𝐵 ∈ ran ((DIsoH‘𝐾)‘𝑊))
829, 73, 81syl2anc 565 . . . . 5 (𝜑𝐵 ∈ ran ((DIsoH‘𝐾)‘𝑊))
833, 4, 7dochoc 37170 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐵 ∈ ran ((DIsoH‘𝐾)‘𝑊)) → ( ‘( 𝐵)) = 𝐵)
849, 82, 83syl2anc 565 . . . 4 (𝜑 → ( ‘( 𝐵)) = 𝐵)
8580, 84oveq12d 6810 . . 3 (𝜑 → (( ‘((𝑁‘{𝑋}) (𝑁‘{𝑌})))((joinH‘𝐾)‘𝑊)( ‘( 𝐵))) = (( ‘{𝑋, 𝑌})((joinH‘𝐾)‘𝑊)𝐵))
863, 4, 5, 6, 7dochcl 37156 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ {𝑋, 𝑌} ⊆ 𝑉) → ( ‘{𝑋, 𝑌}) ∈ ran ((DIsoH‘𝐾)‘𝑊))
879, 28, 86syl2anc 565 . . . 4 (𝜑 → ( ‘{𝑋, 𝑌}) ∈ ran ((DIsoH‘𝐾)‘𝑊))
883, 4, 8, 5, 26, 71, 9, 87, 73dihjat2 37234 . . 3 (𝜑 → (( ‘{𝑋, 𝑌})((joinH‘𝐾)‘𝑊)𝐵) = (( ‘{𝑋, 𝑌}) 𝐵))
8977, 85, 883eqtrd 2808 . 2 (𝜑 → ( ‘(((𝑁‘{𝑋}) (𝑁‘{𝑌})) ∩ ( 𝐵))) = (( ‘{𝑋, 𝑌}) 𝐵))
903, 5, 7, 6, 10, 9, 20dochocsp 37182 . 2 (𝜑 → ( ‘(𝑁‘{(𝑋 + 𝑌)})) = ( ‘{(𝑋 + 𝑌)}))
9169, 89, 903eqtr3d 2812 1 (𝜑 → (( ‘{𝑋, 𝑌}) 𝐵) = ( ‘{(𝑋 + 𝑌)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1630  wcel 2144  wne 2942  cdif 3718  cin 3720  wss 3721  {csn 4314  {cpr 4316  ran crn 5250  cfv 6031  (class class class)co 6792  Basecbs 16063  +gcplusg 16148  0gc0g 16307  SubGrpcsubg 17795  LSSumclsm 18255  LModclmod 19072  LSubSpclss 19141  LSpanclspn 19183  LSAtomsclsa 34776  HLchlt 35152  LHypclh 35785  DVecHcdvh 36881  DIsoHcdih 37031  ocHcoch 37150  joinHcdjh 37197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-riotaBAD 34754
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-fal 1636  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-iin 4655  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-tpos 7503  df-undef 7550  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-oadd 7716  df-er 7895  df-map 8010  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-2 11280  df-3 11281  df-4 11282  df-5 11283  df-6 11284  df-n0 11494  df-z 11579  df-uz 11888  df-fz 12533  df-struct 16065  df-ndx 16066  df-slot 16067  df-base 16069  df-sets 16070  df-ress 16071  df-plusg 16161  df-mulr 16162  df-sca 16164  df-vsca 16165  df-0g 16309  df-mre 16453  df-mrc 16454  df-acs 16456  df-preset 17135  df-poset 17153  df-plt 17165  df-lub 17181  df-glb 17182  df-join 17183  df-meet 17184  df-p0 17246  df-p1 17247  df-lat 17253  df-clat 17315  df-mgm 17449  df-sgrp 17491  df-mnd 17502  df-submnd 17543  df-grp 17632  df-minusg 17633  df-sbg 17634  df-subg 17798  df-cntz 17956  df-oppg 17982  df-lsm 18257  df-cmn 18401  df-abl 18402  df-mgp 18697  df-ur 18709  df-ring 18756  df-oppr 18830  df-dvdsr 18848  df-unit 18849  df-invr 18879  df-dvr 18890  df-drng 18958  df-lmod 19074  df-lss 19142  df-lsp 19184  df-lvec 19315  df-lsatoms 34778  df-lshyp 34779  df-lcv 34821  df-oposet 34978  df-ol 34980  df-oml 34981  df-covers 35068  df-ats 35069  df-atl 35100  df-cvlat 35124  df-hlat 35153  df-llines 35299  df-lplanes 35300  df-lvols 35301  df-lines 35302  df-psubsp 35304  df-pmap 35305  df-padd 35597  df-lhyp 35789  df-laut 35790  df-ldil 35905  df-ltrn 35906  df-trl 35961  df-tgrp 36545  df-tendo 36557  df-edring 36559  df-dveca 36805  df-disoa 36832  df-dvech 36882  df-dib 36942  df-dic 36976  df-dih 37032  df-doch 37151  df-djh 37198
This theorem is referenced by:  lcfrlem25  37370  lcfrlem35  37380
  Copyright terms: Public domain W3C validator