![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcfl8b | Structured version Visualization version GIF version |
Description: Property of a nonzero functional with a closed kernel. (Contributed by NM, 4-Feb-2015.) |
Ref | Expression |
---|---|
lcfl8b.h | ⊢ 𝐻 = (LHyp‘𝐾) |
lcfl8b.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
lcfl8b.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
lcfl8b.v | ⊢ 𝑉 = (Base‘𝑈) |
lcfl8b.n | ⊢ 𝑁 = (LSpan‘𝑈) |
lcfl8b.z | ⊢ 0 = (0g‘𝑈) |
lcfl8b.f | ⊢ 𝐹 = (LFnl‘𝑈) |
lcfl8b.l | ⊢ 𝐿 = (LKer‘𝑈) |
lcfl8b.d | ⊢ 𝐷 = (LDual‘𝑈) |
lcfl8b.y | ⊢ 𝑌 = (0g‘𝐷) |
lcfl8b.c | ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} |
lcfl8b.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
lcfl8b.g | ⊢ (𝜑 → 𝐺 ∈ (𝐶 ∖ {𝑌})) |
Ref | Expression |
---|---|
lcfl8b | ⊢ (𝜑 → ∃𝑥 ∈ (𝑉 ∖ { 0 })( ⊥ ‘(𝐿‘𝐺)) = (𝑁‘{𝑥})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcfl8b.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ (𝐶 ∖ {𝑌})) | |
2 | 1 | eldifad 3728 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝐶) |
3 | lcfl8b.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | lcfl8b.o | . . . . 5 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
5 | lcfl8b.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
6 | lcfl8b.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑈) | |
7 | lcfl8b.f | . . . . 5 ⊢ 𝐹 = (LFnl‘𝑈) | |
8 | lcfl8b.l | . . . . 5 ⊢ 𝐿 = (LKer‘𝑈) | |
9 | lcfl8b.c | . . . . 5 ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} | |
10 | lcfl8b.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
11 | 9 | lcfl1lem 37301 | . . . . . . 7 ⊢ (𝐺 ∈ 𝐶 ↔ (𝐺 ∈ 𝐹 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺))) |
12 | 11 | simplbi 478 | . . . . . 6 ⊢ (𝐺 ∈ 𝐶 → 𝐺 ∈ 𝐹) |
13 | 2, 12 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
14 | 3, 4, 5, 6, 7, 8, 9, 10, 13 | lcfl8 37312 | . . . 4 ⊢ (𝜑 → (𝐺 ∈ 𝐶 ↔ ∃𝑥 ∈ 𝑉 (𝐿‘𝐺) = ( ⊥ ‘{𝑥}))) |
15 | 2, 14 | mpbid 222 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ 𝑉 (𝐿‘𝐺) = ( ⊥ ‘{𝑥})) |
16 | fveq2 6354 | . . . . . . . . . 10 ⊢ ((𝐿‘𝐺) = ( ⊥ ‘{𝑥}) → ( ⊥ ‘(𝐿‘𝐺)) = ( ⊥ ‘( ⊥ ‘{𝑥}))) | |
17 | 16 | adantl 473 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑉) ∧ (𝐿‘𝐺) = ( ⊥ ‘{𝑥})) → ( ⊥ ‘(𝐿‘𝐺)) = ( ⊥ ‘( ⊥ ‘{𝑥}))) |
18 | lcfl8b.n | . . . . . . . . . 10 ⊢ 𝑁 = (LSpan‘𝑈) | |
19 | 10 | ad2antrr 764 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑉) ∧ (𝐿‘𝐺) = ( ⊥ ‘{𝑥})) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
20 | simplr 809 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑉) ∧ (𝐿‘𝐺) = ( ⊥ ‘{𝑥})) → 𝑥 ∈ 𝑉) | |
21 | 3, 5, 4, 6, 18, 19, 20 | dochocsn 37191 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑉) ∧ (𝐿‘𝐺) = ( ⊥ ‘{𝑥})) → ( ⊥ ‘( ⊥ ‘{𝑥})) = (𝑁‘{𝑥})) |
22 | 17, 21 | eqtrd 2795 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑉) ∧ (𝐿‘𝐺) = ( ⊥ ‘{𝑥})) → ( ⊥ ‘(𝐿‘𝐺)) = (𝑁‘{𝑥})) |
23 | 2, 11 | sylib 208 | . . . . . . . . . . . 12 ⊢ (𝜑 → (𝐺 ∈ 𝐹 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺))) |
24 | 23 | simprd 482 | . . . . . . . . . . 11 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺)) |
25 | eldifsni 4467 | . . . . . . . . . . . . 13 ⊢ (𝐺 ∈ (𝐶 ∖ {𝑌}) → 𝐺 ≠ 𝑌) | |
26 | 1, 25 | syl 17 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝐺 ≠ 𝑌) |
27 | lcfl8b.d | . . . . . . . . . . . . . 14 ⊢ 𝐷 = (LDual‘𝑈) | |
28 | lcfl8b.y | . . . . . . . . . . . . . 14 ⊢ 𝑌 = (0g‘𝐷) | |
29 | 3, 5, 10 | dvhlmod 36920 | . . . . . . . . . . . . . 14 ⊢ (𝜑 → 𝑈 ∈ LMod) |
30 | 6, 7, 8, 27, 28, 29, 13 | lkr0f2 34970 | . . . . . . . . . . . . 13 ⊢ (𝜑 → ((𝐿‘𝐺) = 𝑉 ↔ 𝐺 = 𝑌)) |
31 | 30 | necon3bid 2977 | . . . . . . . . . . . 12 ⊢ (𝜑 → ((𝐿‘𝐺) ≠ 𝑉 ↔ 𝐺 ≠ 𝑌)) |
32 | 26, 31 | mpbird 247 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝐿‘𝐺) ≠ 𝑉) |
33 | 24, 32 | eqnetrd 3000 | . . . . . . . . . 10 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ 𝑉) |
34 | 33 | ad2antrr 764 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑉) ∧ (𝐿‘𝐺) = ( ⊥ ‘{𝑥})) → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ 𝑉) |
35 | eqid 2761 | . . . . . . . . . 10 ⊢ (LSAtoms‘𝑈) = (LSAtoms‘𝑈) | |
36 | 13 | ad2antrr 764 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑉) ∧ (𝐿‘𝐺) = ( ⊥ ‘{𝑥})) → 𝐺 ∈ 𝐹) |
37 | 3, 4, 5, 6, 35, 7, 8, 19, 36 | dochkrsat2 37266 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑉) ∧ (𝐿‘𝐺) = ( ⊥ ‘{𝑥})) → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ 𝑉 ↔ ( ⊥ ‘(𝐿‘𝐺)) ∈ (LSAtoms‘𝑈))) |
38 | 34, 37 | mpbid 222 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑉) ∧ (𝐿‘𝐺) = ( ⊥ ‘{𝑥})) → ( ⊥ ‘(𝐿‘𝐺)) ∈ (LSAtoms‘𝑈)) |
39 | 22, 38 | eqeltrrd 2841 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑉) ∧ (𝐿‘𝐺) = ( ⊥ ‘{𝑥})) → (𝑁‘{𝑥}) ∈ (LSAtoms‘𝑈)) |
40 | lcfl8b.z | . . . . . . . 8 ⊢ 0 = (0g‘𝑈) | |
41 | 29 | ad2antrr 764 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑉) ∧ (𝐿‘𝐺) = ( ⊥ ‘{𝑥})) → 𝑈 ∈ LMod) |
42 | 6, 18, 40, 35, 41, 20 | lsatspn0 34809 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑉) ∧ (𝐿‘𝐺) = ( ⊥ ‘{𝑥})) → ((𝑁‘{𝑥}) ∈ (LSAtoms‘𝑈) ↔ 𝑥 ≠ 0 )) |
43 | 39, 42 | mpbid 222 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑉) ∧ (𝐿‘𝐺) = ( ⊥ ‘{𝑥})) → 𝑥 ≠ 0 ) |
44 | 43, 22 | jca 555 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑉) ∧ (𝐿‘𝐺) = ( ⊥ ‘{𝑥})) → (𝑥 ≠ 0 ∧ ( ⊥ ‘(𝐿‘𝐺)) = (𝑁‘{𝑥}))) |
45 | 44 | ex 449 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ((𝐿‘𝐺) = ( ⊥ ‘{𝑥}) → (𝑥 ≠ 0 ∧ ( ⊥ ‘(𝐿‘𝐺)) = (𝑁‘{𝑥})))) |
46 | 45 | reximdva 3156 | . . 3 ⊢ (𝜑 → (∃𝑥 ∈ 𝑉 (𝐿‘𝐺) = ( ⊥ ‘{𝑥}) → ∃𝑥 ∈ 𝑉 (𝑥 ≠ 0 ∧ ( ⊥ ‘(𝐿‘𝐺)) = (𝑁‘{𝑥})))) |
47 | 15, 46 | mpd 15 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝑉 (𝑥 ≠ 0 ∧ ( ⊥ ‘(𝐿‘𝐺)) = (𝑁‘{𝑥}))) |
48 | rexdifsn 4470 | . 2 ⊢ (∃𝑥 ∈ (𝑉 ∖ { 0 })( ⊥ ‘(𝐿‘𝐺)) = (𝑁‘{𝑥}) ↔ ∃𝑥 ∈ 𝑉 (𝑥 ≠ 0 ∧ ( ⊥ ‘(𝐿‘𝐺)) = (𝑁‘{𝑥}))) | |
49 | 47, 48 | sylibr 224 | 1 ⊢ (𝜑 → ∃𝑥 ∈ (𝑉 ∖ { 0 })( ⊥ ‘(𝐿‘𝐺)) = (𝑁‘{𝑥})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2140 ≠ wne 2933 ∃wrex 3052 {crab 3055 ∖ cdif 3713 {csn 4322 ‘cfv 6050 Basecbs 16080 0gc0g 16323 LModclmod 19086 LSpanclspn 19194 LSAtomsclsa 34783 LFnlclfn 34866 LKerclk 34894 LDualcld 34932 HLchlt 35159 LHypclh 35792 DVecHcdvh 36888 ocHcoch 37157 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-rep 4924 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-cnex 10205 ax-resscn 10206 ax-1cn 10207 ax-icn 10208 ax-addcl 10209 ax-addrcl 10210 ax-mulcl 10211 ax-mulrcl 10212 ax-mulcom 10213 ax-addass 10214 ax-mulass 10215 ax-distr 10216 ax-i2m1 10217 ax-1ne0 10218 ax-1rid 10219 ax-rnegex 10220 ax-rrecex 10221 ax-cnre 10222 ax-pre-lttri 10223 ax-pre-lttrn 10224 ax-pre-ltadd 10225 ax-pre-mulgt0 10226 ax-riotaBAD 34761 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-fal 1638 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-reu 3058 df-rmo 3059 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-uni 4590 df-int 4629 df-iun 4675 df-iin 4676 df-br 4806 df-opab 4866 df-mpt 4883 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-pred 5842 df-ord 5888 df-on 5889 df-lim 5890 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-riota 6776 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-of 7064 df-om 7233 df-1st 7335 df-2nd 7336 df-tpos 7523 df-undef 7570 df-wrecs 7578 df-recs 7639 df-rdg 7677 df-1o 7731 df-oadd 7735 df-er 7914 df-map 8028 df-en 8125 df-dom 8126 df-sdom 8127 df-fin 8128 df-pnf 10289 df-mnf 10290 df-xr 10291 df-ltxr 10292 df-le 10293 df-sub 10481 df-neg 10482 df-nn 11234 df-2 11292 df-3 11293 df-4 11294 df-5 11295 df-6 11296 df-n0 11506 df-z 11591 df-uz 11901 df-fz 12541 df-struct 16082 df-ndx 16083 df-slot 16084 df-base 16086 df-sets 16087 df-ress 16088 df-plusg 16177 df-mulr 16178 df-sca 16180 df-vsca 16181 df-0g 16325 df-preset 17150 df-poset 17168 df-plt 17180 df-lub 17196 df-glb 17197 df-join 17198 df-meet 17199 df-p0 17261 df-p1 17262 df-lat 17268 df-clat 17330 df-mgm 17464 df-sgrp 17506 df-mnd 17517 df-submnd 17558 df-grp 17647 df-minusg 17648 df-sbg 17649 df-subg 17813 df-cntz 17971 df-lsm 18272 df-cmn 18416 df-abl 18417 df-mgp 18711 df-ur 18723 df-ring 18770 df-oppr 18844 df-dvdsr 18862 df-unit 18863 df-invr 18893 df-dvr 18904 df-drng 18972 df-lmod 19088 df-lss 19156 df-lsp 19195 df-lvec 19326 df-lsatoms 34785 df-lshyp 34786 df-lfl 34867 df-lkr 34895 df-ldual 34933 df-oposet 34985 df-ol 34987 df-oml 34988 df-covers 35075 df-ats 35076 df-atl 35107 df-cvlat 35131 df-hlat 35160 df-llines 35306 df-lplanes 35307 df-lvols 35308 df-lines 35309 df-psubsp 35311 df-pmap 35312 df-padd 35604 df-lhyp 35796 df-laut 35797 df-ldil 35912 df-ltrn 35913 df-trl 35968 df-tgrp 36552 df-tendo 36564 df-edring 36566 df-dveca 36812 df-disoa 36839 df-dvech 36889 df-dib 36949 df-dic 36983 df-dih 37039 df-doch 37158 df-djh 37205 |
This theorem is referenced by: mapdrvallem2 37455 |
Copyright terms: Public domain | W3C validator |