Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfl7lem Structured version   Visualization version   GIF version

Theorem lcfl7lem 37308
Description: Lemma for lcfl7N 37310. If two functionals 𝐺 and 𝐽 are equal, they are determined by the same vector. (Contributed by NM, 4-Jan-2015.)
Hypotheses
Ref Expression
lcfl7lem.h 𝐻 = (LHyp‘𝐾)
lcfl7lem.o = ((ocH‘𝐾)‘𝑊)
lcfl7lem.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcfl7lem.v 𝑉 = (Base‘𝑈)
lcfl7lem.a + = (+g𝑈)
lcfl7lem.t · = ( ·𝑠𝑈)
lcfl7lem.s 𝑆 = (Scalar‘𝑈)
lcfl7lem.r 𝑅 = (Base‘𝑆)
lcfl7lem.z 0 = (0g𝑈)
lcfl7lem.f 𝐹 = (LFnl‘𝑈)
lcfl7lem.l 𝐿 = (LKer‘𝑈)
lcfl7lem.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
lcfl7lem.g 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋))))
lcfl7lem.j 𝐽 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑌})𝑣 = (𝑤 + (𝑘 · 𝑌))))
lcfl7lem.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
lcfl7lem.x2 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
lcfl7lem.gj (𝜑𝐺 = 𝐽)
Assertion
Ref Expression
lcfl7lem (𝜑𝑋 = 𝑌)
Distinct variable groups:   𝑣,𝑘,𝑤, +   ,𝑘,𝑣,𝑤   𝑤, 0   𝑅,𝑘,𝑣   𝑆,𝑘,𝑤   𝑣,𝑉   · ,𝑘,𝑣,𝑤   𝑘,𝑋,𝑣,𝑤   𝑘,𝑌,𝑣,𝑤
Allowed substitution hints:   𝜑(𝑤,𝑣,𝑘)   𝑅(𝑤)   𝑆(𝑣)   𝑈(𝑤,𝑣,𝑘)   𝐹(𝑤,𝑣,𝑘)   𝐺(𝑤,𝑣,𝑘)   𝐻(𝑤,𝑣,𝑘)   𝐽(𝑤,𝑣,𝑘)   𝐾(𝑤,𝑣,𝑘)   𝐿(𝑤,𝑣,𝑘)   𝑉(𝑤,𝑘)   𝑊(𝑤,𝑣,𝑘)   0 (𝑣,𝑘)

Proof of Theorem lcfl7lem
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 lcfl7lem.h . . . . . 6 𝐻 = (LHyp‘𝐾)
2 lcfl7lem.o . . . . . 6 = ((ocH‘𝐾)‘𝑊)
3 lcfl7lem.u . . . . . 6 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 lcfl7lem.v . . . . . 6 𝑉 = (Base‘𝑈)
5 lcfl7lem.z . . . . . 6 0 = (0g𝑈)
6 lcfl7lem.a . . . . . 6 + = (+g𝑈)
7 lcfl7lem.t . . . . . 6 · = ( ·𝑠𝑈)
8 lcfl7lem.l . . . . . 6 𝐿 = (LKer‘𝑈)
9 lcfl7lem.s . . . . . 6 𝑆 = (Scalar‘𝑈)
10 lcfl7lem.r . . . . . 6 𝑅 = (Base‘𝑆)
11 lcfl7lem.g . . . . . 6 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋))))
12 lcfl7lem.k . . . . . 6 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
13 lcfl7lem.x . . . . . 6 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
141, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13dochsnkr2cl 37283 . . . . 5 (𝜑𝑋 ∈ (( ‘(𝐿𝐺)) ∖ { 0 }))
1514eldifad 3727 . . . 4 (𝜑𝑋 ∈ ( ‘(𝐿𝐺)))
16 lcfl7lem.gj . . . . . . . 8 (𝜑𝐺 = 𝐽)
1716fveq2d 6357 . . . . . . 7 (𝜑 → (𝐿𝐺) = (𝐿𝐽))
18 lcfl7lem.j . . . . . . . 8 𝐽 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑌})𝑣 = (𝑤 + (𝑘 · 𝑌))))
19 lcfl7lem.x2 . . . . . . . 8 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
201, 2, 3, 4, 5, 6, 7, 8, 9, 10, 18, 12, 19dochsnkr2 37282 . . . . . . 7 (𝜑 → (𝐿𝐽) = ( ‘{𝑌}))
2117, 20eqtrd 2794 . . . . . 6 (𝜑 → (𝐿𝐺) = ( ‘{𝑌}))
2221fveq2d 6357 . . . . 5 (𝜑 → ( ‘(𝐿𝐺)) = ( ‘( ‘{𝑌})))
23 eqid 2760 . . . . . . 7 (LSpan‘𝑈) = (LSpan‘𝑈)
2419eldifad 3727 . . . . . . . 8 (𝜑𝑌𝑉)
2524snssd 4485 . . . . . . 7 (𝜑 → {𝑌} ⊆ 𝑉)
261, 3, 2, 4, 23, 12, 25dochocsp 37188 . . . . . 6 (𝜑 → ( ‘((LSpan‘𝑈)‘{𝑌})) = ( ‘{𝑌}))
2726fveq2d 6357 . . . . 5 (𝜑 → ( ‘( ‘((LSpan‘𝑈)‘{𝑌}))) = ( ‘( ‘{𝑌})))
28 eqid 2760 . . . . . . . 8 ((DIsoH‘𝐾)‘𝑊) = ((DIsoH‘𝐾)‘𝑊)
291, 3, 4, 23, 28dihlsprn 37140 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑌𝑉) → ((LSpan‘𝑈)‘{𝑌}) ∈ ran ((DIsoH‘𝐾)‘𝑊))
3012, 24, 29syl2anc 696 . . . . . 6 (𝜑 → ((LSpan‘𝑈)‘{𝑌}) ∈ ran ((DIsoH‘𝐾)‘𝑊))
311, 28, 2dochoc 37176 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((LSpan‘𝑈)‘{𝑌}) ∈ ran ((DIsoH‘𝐾)‘𝑊)) → ( ‘( ‘((LSpan‘𝑈)‘{𝑌}))) = ((LSpan‘𝑈)‘{𝑌}))
3212, 30, 31syl2anc 696 . . . . 5 (𝜑 → ( ‘( ‘((LSpan‘𝑈)‘{𝑌}))) = ((LSpan‘𝑈)‘{𝑌}))
3322, 27, 323eqtr2d 2800 . . . 4 (𝜑 → ( ‘(𝐿𝐺)) = ((LSpan‘𝑈)‘{𝑌}))
3415, 33eleqtrd 2841 . . 3 (𝜑𝑋 ∈ ((LSpan‘𝑈)‘{𝑌}))
351, 3, 12dvhlmod 36919 . . . 4 (𝜑𝑈 ∈ LMod)
369, 10, 4, 7, 23lspsnel 19225 . . . 4 ((𝑈 ∈ LMod ∧ 𝑌𝑉) → (𝑋 ∈ ((LSpan‘𝑈)‘{𝑌}) ↔ ∃𝑠𝑅 𝑋 = (𝑠 · 𝑌)))
3735, 24, 36syl2anc 696 . . 3 (𝜑 → (𝑋 ∈ ((LSpan‘𝑈)‘{𝑌}) ↔ ∃𝑠𝑅 𝑋 = (𝑠 · 𝑌)))
3834, 37mpbid 222 . 2 (𝜑 → ∃𝑠𝑅 𝑋 = (𝑠 · 𝑌))
39 simp3 1133 . . . 4 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → 𝑋 = (𝑠 · 𝑌))
40 fveq2 6353 . . . . . . . . . 10 (𝑋 = (𝑠 · 𝑌) → (𝐺𝑋) = (𝐺‘(𝑠 · 𝑌)))
41403ad2ant3 1130 . . . . . . . . 9 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → (𝐺𝑋) = (𝐺‘(𝑠 · 𝑌)))
42 eqid 2760 . . . . . . . . . . . 12 (1r𝑆) = (1r𝑆)
431, 2, 3, 4, 6, 7, 5, 9, 10, 42, 12, 19, 18dochfl1 37285 . . . . . . . . . . 11 (𝜑 → (𝐽𝑌) = (1r𝑆))
4416fveq1d 6355 . . . . . . . . . . 11 (𝜑 → (𝐺𝑌) = (𝐽𝑌))
451, 2, 3, 4, 6, 7, 5, 9, 10, 42, 12, 13, 11dochfl1 37285 . . . . . . . . . . 11 (𝜑 → (𝐺𝑋) = (1r𝑆))
4643, 44, 453eqtr4rd 2805 . . . . . . . . . 10 (𝜑 → (𝐺𝑋) = (𝐺𝑌))
47463ad2ant1 1128 . . . . . . . . 9 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → (𝐺𝑋) = (𝐺𝑌))
48353ad2ant1 1128 . . . . . . . . . 10 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → 𝑈 ∈ LMod)
49 lcfl7lem.f . . . . . . . . . . . 12 𝐹 = (LFnl‘𝑈)
501, 2, 3, 4, 5, 6, 7, 49, 9, 10, 11, 12, 13dochflcl 37284 . . . . . . . . . . 11 (𝜑𝐺𝐹)
51503ad2ant1 1128 . . . . . . . . . 10 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → 𝐺𝐹)
52 simp2 1132 . . . . . . . . . 10 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → 𝑠𝑅)
53243ad2ant1 1128 . . . . . . . . . 10 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → 𝑌𝑉)
54 eqid 2760 . . . . . . . . . . 11 (.r𝑆) = (.r𝑆)
559, 10, 54, 4, 7, 49lflmul 34876 . . . . . . . . . 10 ((𝑈 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑠𝑅𝑌𝑉)) → (𝐺‘(𝑠 · 𝑌)) = (𝑠(.r𝑆)(𝐺𝑌)))
5648, 51, 52, 53, 55syl112anc 1481 . . . . . . . . 9 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → (𝐺‘(𝑠 · 𝑌)) = (𝑠(.r𝑆)(𝐺𝑌)))
5741, 47, 563eqtr3d 2802 . . . . . . . 8 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → (𝐺𝑌) = (𝑠(.r𝑆)(𝐺𝑌)))
5857oveq1d 6829 . . . . . . 7 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → ((𝐺𝑌)(.r𝑆)((invr𝑆)‘(𝐺𝑌))) = ((𝑠(.r𝑆)(𝐺𝑌))(.r𝑆)((invr𝑆)‘(𝐺𝑌))))
599lmodring 19093 . . . . . . . . . 10 (𝑈 ∈ LMod → 𝑆 ∈ Ring)
6035, 59syl 17 . . . . . . . . 9 (𝜑𝑆 ∈ Ring)
61603ad2ant1 1128 . . . . . . . 8 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → 𝑆 ∈ Ring)
629, 10, 4, 49lflcl 34872 . . . . . . . . . 10 ((𝑈 ∈ LMod ∧ 𝐺𝐹𝑌𝑉) → (𝐺𝑌) ∈ 𝑅)
6335, 50, 24, 62syl3anc 1477 . . . . . . . . 9 (𝜑 → (𝐺𝑌) ∈ 𝑅)
64633ad2ant1 1128 . . . . . . . 8 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → (𝐺𝑌) ∈ 𝑅)
651, 3, 12dvhlvec 36918 . . . . . . . . . . 11 (𝜑𝑈 ∈ LVec)
669lvecdrng 19327 . . . . . . . . . . 11 (𝑈 ∈ LVec → 𝑆 ∈ DivRing)
6765, 66syl 17 . . . . . . . . . 10 (𝜑𝑆 ∈ DivRing)
6844, 43eqtrd 2794 . . . . . . . . . . 11 (𝜑 → (𝐺𝑌) = (1r𝑆))
69 eqid 2760 . . . . . . . . . . . . 13 (0g𝑆) = (0g𝑆)
7069, 42drngunz 18984 . . . . . . . . . . . 12 (𝑆 ∈ DivRing → (1r𝑆) ≠ (0g𝑆))
7167, 70syl 17 . . . . . . . . . . 11 (𝜑 → (1r𝑆) ≠ (0g𝑆))
7268, 71eqnetrd 2999 . . . . . . . . . 10 (𝜑 → (𝐺𝑌) ≠ (0g𝑆))
73 eqid 2760 . . . . . . . . . . 11 (invr𝑆) = (invr𝑆)
7410, 69, 73drnginvrcl 18986 . . . . . . . . . 10 ((𝑆 ∈ DivRing ∧ (𝐺𝑌) ∈ 𝑅 ∧ (𝐺𝑌) ≠ (0g𝑆)) → ((invr𝑆)‘(𝐺𝑌)) ∈ 𝑅)
7567, 63, 72, 74syl3anc 1477 . . . . . . . . 9 (𝜑 → ((invr𝑆)‘(𝐺𝑌)) ∈ 𝑅)
76753ad2ant1 1128 . . . . . . . 8 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → ((invr𝑆)‘(𝐺𝑌)) ∈ 𝑅)
7710, 54ringass 18784 . . . . . . . 8 ((𝑆 ∈ Ring ∧ (𝑠𝑅 ∧ (𝐺𝑌) ∈ 𝑅 ∧ ((invr𝑆)‘(𝐺𝑌)) ∈ 𝑅)) → ((𝑠(.r𝑆)(𝐺𝑌))(.r𝑆)((invr𝑆)‘(𝐺𝑌))) = (𝑠(.r𝑆)((𝐺𝑌)(.r𝑆)((invr𝑆)‘(𝐺𝑌)))))
7861, 52, 64, 76, 77syl13anc 1479 . . . . . . 7 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → ((𝑠(.r𝑆)(𝐺𝑌))(.r𝑆)((invr𝑆)‘(𝐺𝑌))) = (𝑠(.r𝑆)((𝐺𝑌)(.r𝑆)((invr𝑆)‘(𝐺𝑌)))))
7910, 69, 54, 42, 73drnginvrr 18989 . . . . . . . . . 10 ((𝑆 ∈ DivRing ∧ (𝐺𝑌) ∈ 𝑅 ∧ (𝐺𝑌) ≠ (0g𝑆)) → ((𝐺𝑌)(.r𝑆)((invr𝑆)‘(𝐺𝑌))) = (1r𝑆))
8067, 63, 72, 79syl3anc 1477 . . . . . . . . 9 (𝜑 → ((𝐺𝑌)(.r𝑆)((invr𝑆)‘(𝐺𝑌))) = (1r𝑆))
81803ad2ant1 1128 . . . . . . . 8 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → ((𝐺𝑌)(.r𝑆)((invr𝑆)‘(𝐺𝑌))) = (1r𝑆))
8281oveq2d 6830 . . . . . . 7 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → (𝑠(.r𝑆)((𝐺𝑌)(.r𝑆)((invr𝑆)‘(𝐺𝑌)))) = (𝑠(.r𝑆)(1r𝑆)))
8358, 78, 823eqtrrd 2799 . . . . . 6 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → (𝑠(.r𝑆)(1r𝑆)) = ((𝐺𝑌)(.r𝑆)((invr𝑆)‘(𝐺𝑌))))
8410, 54, 42ringridm 18792 . . . . . . 7 ((𝑆 ∈ Ring ∧ 𝑠𝑅) → (𝑠(.r𝑆)(1r𝑆)) = 𝑠)
8561, 52, 84syl2anc 696 . . . . . 6 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → (𝑠(.r𝑆)(1r𝑆)) = 𝑠)
8683, 85, 813eqtr3d 2802 . . . . 5 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → 𝑠 = (1r𝑆))
87 oveq1 6821 . . . . . 6 (𝑠 = (1r𝑆) → (𝑠 · 𝑌) = ((1r𝑆) · 𝑌))
884, 9, 7, 42lmodvs1 19113 . . . . . . . 8 ((𝑈 ∈ LMod ∧ 𝑌𝑉) → ((1r𝑆) · 𝑌) = 𝑌)
8935, 24, 88syl2anc 696 . . . . . . 7 (𝜑 → ((1r𝑆) · 𝑌) = 𝑌)
90893ad2ant1 1128 . . . . . 6 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → ((1r𝑆) · 𝑌) = 𝑌)
9187, 90sylan9eqr 2816 . . . . 5 (((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) ∧ 𝑠 = (1r𝑆)) → (𝑠 · 𝑌) = 𝑌)
9286, 91mpdan 705 . . . 4 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → (𝑠 · 𝑌) = 𝑌)
9339, 92eqtrd 2794 . . 3 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → 𝑋 = 𝑌)
9493rexlimdv3a 3171 . 2 (𝜑 → (∃𝑠𝑅 𝑋 = (𝑠 · 𝑌) → 𝑋 = 𝑌))
9538, 94mpd 15 1 (𝜑𝑋 = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  wne 2932  wrex 3051  cdif 3712  {csn 4321  cmpt 4881  ran crn 5267  cfv 6049  crio 6774  (class class class)co 6814  Basecbs 16079  +gcplusg 16163  .rcmulr 16164  Scalarcsca 16166   ·𝑠 cvsca 16167  0gc0g 16322  1rcur 18721  Ringcrg 18767  invrcinvr 18891  DivRingcdr 18969  LModclmod 19085  LSpanclspn 19193  LVecclvec 19324  LFnlclfn 34865  LKerclk 34893  HLchlt 35158  LHypclh 35791  DVecHcdvh 36887  DIsoHcdih 37037  ocHcoch 37156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-riotaBAD 34760
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-tpos 7522  df-undef 7569  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-oadd 7734  df-er 7913  df-map 8027  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-n0 11505  df-z 11590  df-uz 11900  df-fz 12540  df-struct 16081  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-ress 16087  df-plusg 16176  df-mulr 16177  df-sca 16179  df-vsca 16180  df-0g 16324  df-preset 17149  df-poset 17167  df-plt 17179  df-lub 17195  df-glb 17196  df-join 17197  df-meet 17198  df-p0 17260  df-p1 17261  df-lat 17267  df-clat 17329  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-submnd 17557  df-grp 17646  df-minusg 17647  df-sbg 17648  df-subg 17812  df-cntz 17970  df-lsm 18271  df-cmn 18415  df-abl 18416  df-mgp 18710  df-ur 18722  df-ring 18769  df-oppr 18843  df-dvdsr 18861  df-unit 18862  df-invr 18892  df-dvr 18903  df-drng 18971  df-lmod 19087  df-lss 19155  df-lsp 19194  df-lvec 19325  df-lsatoms 34784  df-lshyp 34785  df-lfl 34866  df-lkr 34894  df-oposet 34984  df-ol 34986  df-oml 34987  df-covers 35074  df-ats 35075  df-atl 35106  df-cvlat 35130  df-hlat 35159  df-llines 35305  df-lplanes 35306  df-lvols 35307  df-lines 35308  df-psubsp 35310  df-pmap 35311  df-padd 35603  df-lhyp 35795  df-laut 35796  df-ldil 35911  df-ltrn 35912  df-trl 35967  df-tgrp 36551  df-tendo 36563  df-edring 36565  df-dveca 36811  df-disoa 36838  df-dvech 36888  df-dib 36948  df-dic 36982  df-dih 37038  df-doch 37157  df-djh 37204
This theorem is referenced by:  lcfl7N  37310  lcfrlem9  37359
  Copyright terms: Public domain W3C validator