Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfl7N Structured version   Visualization version   GIF version

Theorem lcfl7N 37326
Description: Property of a functional with a closed kernel. Every nonzero functional is determined by a unique nonzero vector. Note that (𝐿𝐺) = 𝑉 means the functional is zero by lkr0f 34918. (Contributed by NM, 4-Jan-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
lcfl6.h 𝐻 = (LHyp‘𝐾)
lcfl6.o = ((ocH‘𝐾)‘𝑊)
lcfl6.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcfl6.v 𝑉 = (Base‘𝑈)
lcfl6.a + = (+g𝑈)
lcfl6.t · = ( ·𝑠𝑈)
lcfl6.s 𝑆 = (Scalar‘𝑈)
lcfl6.r 𝑅 = (Base‘𝑆)
lcfl6.z 0 = (0g𝑈)
lcfl6.f 𝐹 = (LFnl‘𝑈)
lcfl6.l 𝐿 = (LKer‘𝑈)
lcfl6.c 𝐶 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
lcfl6.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
lcfl6.g (𝜑𝐺𝐹)
Assertion
Ref Expression
lcfl7N (𝜑 → (𝐺𝐶 ↔ ((𝐿𝐺) = 𝑉 ∨ ∃!𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))))
Distinct variable groups:   𝑣,𝑘,𝑤, +   𝑓,𝑘,𝑣,𝑤,𝑥,   𝑤, 0 ,𝑥   𝑥,𝐶   𝑓,𝐺,𝑥   𝑓,𝐹   𝑓,𝐿,𝑥   𝜑,𝑥   𝑅,𝑘,𝑣   𝑆,𝑘,𝑤,𝑥   𝑣,𝑉,𝑥   𝑥,𝑈   · ,𝑘,𝑣,𝑤   𝑥, +   𝑥,𝑅   𝑥, ·
Allowed substitution hints:   𝜑(𝑤,𝑣,𝑓,𝑘)   𝐶(𝑤,𝑣,𝑓,𝑘)   + (𝑓)   𝑅(𝑤,𝑓)   𝑆(𝑣,𝑓)   · (𝑓)   𝑈(𝑤,𝑣,𝑓,𝑘)   𝐹(𝑥,𝑤,𝑣,𝑘)   𝐺(𝑤,𝑣,𝑘)   𝐻(𝑥,𝑤,𝑣,𝑓,𝑘)   𝐾(𝑥,𝑤,𝑣,𝑓,𝑘)   𝐿(𝑤,𝑣,𝑘)   𝑉(𝑤,𝑓,𝑘)   𝑊(𝑥,𝑤,𝑣,𝑓,𝑘)   0 (𝑣,𝑓,𝑘)

Proof of Theorem lcfl7N
Dummy variables 𝑙 𝑢 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lcfl6.h . . 3 𝐻 = (LHyp‘𝐾)
2 lcfl6.o . . 3 = ((ocH‘𝐾)‘𝑊)
3 lcfl6.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 lcfl6.v . . 3 𝑉 = (Base‘𝑈)
5 lcfl6.a . . 3 + = (+g𝑈)
6 lcfl6.t . . 3 · = ( ·𝑠𝑈)
7 lcfl6.s . . 3 𝑆 = (Scalar‘𝑈)
8 lcfl6.r . . 3 𝑅 = (Base‘𝑆)
9 lcfl6.z . . 3 0 = (0g𝑈)
10 lcfl6.f . . 3 𝐹 = (LFnl‘𝑈)
11 lcfl6.l . . 3 𝐿 = (LKer‘𝑈)
12 lcfl6.c . . 3 𝐶 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
13 lcfl6.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
14 lcfl6.g . . 3 (𝜑𝐺𝐹)
151, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14lcfl6 37325 . 2 (𝜑 → (𝐺𝐶 ↔ ((𝐿𝐺) = 𝑉 ∨ ∃𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))))
1613ad2antrr 706 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∖ { 0 }) ∧ 𝑦 ∈ (𝑉 ∖ { 0 }))) ∧ (𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)))))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
17 eqid 2774 . . . . . . . . . 10 (𝑢𝑉 ↦ (𝑙𝑅𝑧 ∈ ( ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥)))) = (𝑢𝑉 ↦ (𝑙𝑅𝑧 ∈ ( ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥))))
18 eqid 2774 . . . . . . . . . 10 (𝑢𝑉 ↦ (𝑙𝑅𝑧 ∈ ( ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦)))) = (𝑢𝑉 ↦ (𝑙𝑅𝑧 ∈ ( ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦))))
19 simplrl 784 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∖ { 0 }) ∧ 𝑦 ∈ (𝑉 ∖ { 0 }))) ∧ (𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)))))) → 𝑥 ∈ (𝑉 ∖ { 0 }))
20 simplrr 785 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∖ { 0 }) ∧ 𝑦 ∈ (𝑉 ∖ { 0 }))) ∧ (𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)))))) → 𝑦 ∈ (𝑉 ∖ { 0 }))
21 simprl 776 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∖ { 0 }) ∧ 𝑦 ∈ (𝑉 ∖ { 0 }))) ∧ (𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)))))) → 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))
22 eqeq1 2778 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑢 → (𝑣 = (𝑤 + (𝑘 · 𝑥)) ↔ 𝑢 = (𝑤 + (𝑘 · 𝑥))))
2322rexbidv 3204 . . . . . . . . . . . . . . 15 (𝑣 = 𝑢 → (∃𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)) ↔ ∃𝑤 ∈ ( ‘{𝑥})𝑢 = (𝑤 + (𝑘 · 𝑥))))
2423riotabidv 6775 . . . . . . . . . . . . . 14 (𝑣 = 𝑢 → (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))) = (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑢 = (𝑤 + (𝑘 · 𝑥))))
25 oveq1 6819 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑙 → (𝑘 · 𝑥) = (𝑙 · 𝑥))
2625oveq2d 6828 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑙 → (𝑤 + (𝑘 · 𝑥)) = (𝑤 + (𝑙 · 𝑥)))
2726eqeq2d 2784 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑙 → (𝑢 = (𝑤 + (𝑘 · 𝑥)) ↔ 𝑢 = (𝑤 + (𝑙 · 𝑥))))
2827rexbidv 3204 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑙 → (∃𝑤 ∈ ( ‘{𝑥})𝑢 = (𝑤 + (𝑘 · 𝑥)) ↔ ∃𝑤 ∈ ( ‘{𝑥})𝑢 = (𝑤 + (𝑙 · 𝑥))))
29 oveq1 6819 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑧 → (𝑤 + (𝑙 · 𝑥)) = (𝑧 + (𝑙 · 𝑥)))
3029eqeq2d 2784 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑧 → (𝑢 = (𝑤 + (𝑙 · 𝑥)) ↔ 𝑢 = (𝑧 + (𝑙 · 𝑥))))
3130cbvrexv 3325 . . . . . . . . . . . . . . . 16 (∃𝑤 ∈ ( ‘{𝑥})𝑢 = (𝑤 + (𝑙 · 𝑥)) ↔ ∃𝑧 ∈ ( ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥)))
3228, 31syl6bb 277 . . . . . . . . . . . . . . 15 (𝑘 = 𝑙 → (∃𝑤 ∈ ( ‘{𝑥})𝑢 = (𝑤 + (𝑘 · 𝑥)) ↔ ∃𝑧 ∈ ( ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥))))
3332cbvriotav 6784 . . . . . . . . . . . . . 14 (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑢 = (𝑤 + (𝑘 · 𝑥))) = (𝑙𝑅𝑧 ∈ ( ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥)))
3424, 33syl6eq 2824 . . . . . . . . . . . . 13 (𝑣 = 𝑢 → (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))) = (𝑙𝑅𝑧 ∈ ( ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥))))
3534cbvmptv 4897 . . . . . . . . . . . 12 (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) = (𝑢𝑉 ↦ (𝑙𝑅𝑧 ∈ ( ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥))))
3621, 35syl6eq 2824 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∖ { 0 }) ∧ 𝑦 ∈ (𝑉 ∖ { 0 }))) ∧ (𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)))))) → 𝐺 = (𝑢𝑉 ↦ (𝑙𝑅𝑧 ∈ ( ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥)))))
37 simprr 778 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∖ { 0 }) ∧ 𝑦 ∈ (𝑉 ∖ { 0 }))) ∧ (𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)))))) → 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)))))
38 eqeq1 2778 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑢 → (𝑣 = (𝑤 + (𝑘 · 𝑦)) ↔ 𝑢 = (𝑤 + (𝑘 · 𝑦))))
3938rexbidv 3204 . . . . . . . . . . . . . . 15 (𝑣 = 𝑢 → (∃𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)) ↔ ∃𝑤 ∈ ( ‘{𝑦})𝑢 = (𝑤 + (𝑘 · 𝑦))))
4039riotabidv 6775 . . . . . . . . . . . . . 14 (𝑣 = 𝑢 → (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦))) = (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑢 = (𝑤 + (𝑘 · 𝑦))))
41 oveq1 6819 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑙 → (𝑘 · 𝑦) = (𝑙 · 𝑦))
4241oveq2d 6828 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑙 → (𝑤 + (𝑘 · 𝑦)) = (𝑤 + (𝑙 · 𝑦)))
4342eqeq2d 2784 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑙 → (𝑢 = (𝑤 + (𝑘 · 𝑦)) ↔ 𝑢 = (𝑤 + (𝑙 · 𝑦))))
4443rexbidv 3204 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑙 → (∃𝑤 ∈ ( ‘{𝑦})𝑢 = (𝑤 + (𝑘 · 𝑦)) ↔ ∃𝑤 ∈ ( ‘{𝑦})𝑢 = (𝑤 + (𝑙 · 𝑦))))
45 oveq1 6819 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑧 → (𝑤 + (𝑙 · 𝑦)) = (𝑧 + (𝑙 · 𝑦)))
4645eqeq2d 2784 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑧 → (𝑢 = (𝑤 + (𝑙 · 𝑦)) ↔ 𝑢 = (𝑧 + (𝑙 · 𝑦))))
4746cbvrexv 3325 . . . . . . . . . . . . . . . 16 (∃𝑤 ∈ ( ‘{𝑦})𝑢 = (𝑤 + (𝑙 · 𝑦)) ↔ ∃𝑧 ∈ ( ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦)))
4844, 47syl6bb 277 . . . . . . . . . . . . . . 15 (𝑘 = 𝑙 → (∃𝑤 ∈ ( ‘{𝑦})𝑢 = (𝑤 + (𝑘 · 𝑦)) ↔ ∃𝑧 ∈ ( ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦))))
4948cbvriotav 6784 . . . . . . . . . . . . . 14 (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑢 = (𝑤 + (𝑘 · 𝑦))) = (𝑙𝑅𝑧 ∈ ( ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦)))
5040, 49syl6eq 2824 . . . . . . . . . . . . 13 (𝑣 = 𝑢 → (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦))) = (𝑙𝑅𝑧 ∈ ( ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦))))
5150cbvmptv 4897 . . . . . . . . . . . 12 (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)))) = (𝑢𝑉 ↦ (𝑙𝑅𝑧 ∈ ( ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦))))
5237, 51syl6eq 2824 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∖ { 0 }) ∧ 𝑦 ∈ (𝑉 ∖ { 0 }))) ∧ (𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)))))) → 𝐺 = (𝑢𝑉 ↦ (𝑙𝑅𝑧 ∈ ( ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦)))))
5336, 52eqtr3d 2810 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∖ { 0 }) ∧ 𝑦 ∈ (𝑉 ∖ { 0 }))) ∧ (𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)))))) → (𝑢𝑉 ↦ (𝑙𝑅𝑧 ∈ ( ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥)))) = (𝑢𝑉 ↦ (𝑙𝑅𝑧 ∈ ( ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦)))))
541, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 16, 17, 18, 19, 20, 53lcfl7lem 37324 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∖ { 0 }) ∧ 𝑦 ∈ (𝑉 ∖ { 0 }))) ∧ (𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)))))) → 𝑥 = 𝑦)
5554ex 398 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (𝑉 ∖ { 0 }) ∧ 𝑦 ∈ (𝑉 ∖ { 0 }))) → ((𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦))))) → 𝑥 = 𝑦))
5655ralrimivva 3123 . . . . . . 7 (𝜑 → ∀𝑥 ∈ (𝑉 ∖ { 0 })∀𝑦 ∈ (𝑉 ∖ { 0 })((𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦))))) → 𝑥 = 𝑦))
5756a1d 25 . . . . . 6 (𝜑 → (∃𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) → ∀𝑥 ∈ (𝑉 ∖ { 0 })∀𝑦 ∈ (𝑉 ∖ { 0 })((𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦))))) → 𝑥 = 𝑦)))
5857ancld 541 . . . . 5 (𝜑 → (∃𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) → (∃𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ ∀𝑥 ∈ (𝑉 ∖ { 0 })∀𝑦 ∈ (𝑉 ∖ { 0 })((𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦))))) → 𝑥 = 𝑦))))
59 sneq 4336 . . . . . . . . . . 11 (𝑥 = 𝑦 → {𝑥} = {𝑦})
6059fveq2d 6352 . . . . . . . . . 10 (𝑥 = 𝑦 → ( ‘{𝑥}) = ( ‘{𝑦}))
61 oveq2 6820 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝑘 · 𝑥) = (𝑘 · 𝑦))
6261oveq2d 6828 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑤 + (𝑘 · 𝑥)) = (𝑤 + (𝑘 · 𝑦)))
6362eqeq2d 2784 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑣 = (𝑤 + (𝑘 · 𝑥)) ↔ 𝑣 = (𝑤 + (𝑘 · 𝑦))))
6460, 63rexeqbidv 3306 . . . . . . . . 9 (𝑥 = 𝑦 → (∃𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)) ↔ ∃𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦))))
6564riotabidv 6775 . . . . . . . 8 (𝑥 = 𝑦 → (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))) = (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦))))
6665mpteq2dv 4892 . . . . . . 7 (𝑥 = 𝑦 → (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)))))
6766eqeq2d 2784 . . . . . 6 (𝑥 = 𝑦 → (𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ↔ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦))))))
6867reu4 3558 . . . . 5 (∃!𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ↔ (∃𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ ∀𝑥 ∈ (𝑉 ∖ { 0 })∀𝑦 ∈ (𝑉 ∖ { 0 })((𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦))))) → 𝑥 = 𝑦)))
6958, 68syl6ibr 243 . . . 4 (𝜑 → (∃𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) → ∃!𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))))
70 reurex 3313 . . . 4 (∃!𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) → ∃𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))
7169, 70impbid1 216 . . 3 (𝜑 → (∃𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ↔ ∃!𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))))
7271orbi2d 928 . 2 (𝜑 → (((𝐿𝐺) = 𝑉 ∨ ∃𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) ↔ ((𝐿𝐺) = 𝑉 ∨ ∃!𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))))
7315, 72bitrd 269 1 (𝜑 → (𝐺𝐶 ↔ ((𝐿𝐺) = 𝑉 ∨ ∃!𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 383  wo 863   = wceq 1634  wcel 2148  wral 3064  wrex 3065  ∃!wreu 3066  {crab 3068  cdif 3726  {csn 4326  cmpt 4876  cfv 6042  crio 6772  (class class class)co 6812  Basecbs 16084  +gcplusg 16169  Scalarcsca 16172   ·𝑠 cvsca 16173  0gc0g 16328  LFnlclfn 34881  LKerclk 34909  HLchlt 35174  LHypclh 35808  DVecHcdvh 36903  ocHcoch 37172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1873  ax-4 1888  ax-5 1994  ax-6 2060  ax-7 2096  ax-8 2150  ax-9 2157  ax-10 2177  ax-11 2193  ax-12 2206  ax-13 2411  ax-ext 2754  ax-rep 4917  ax-sep 4928  ax-nul 4936  ax-pow 4988  ax-pr 5048  ax-un 7117  ax-cnex 10215  ax-resscn 10216  ax-1cn 10217  ax-icn 10218  ax-addcl 10219  ax-addrcl 10220  ax-mulcl 10221  ax-mulrcl 10222  ax-mulcom 10223  ax-addass 10224  ax-mulass 10225  ax-distr 10226  ax-i2m1 10227  ax-1ne0 10228  ax-1rid 10229  ax-rnegex 10230  ax-rrecex 10231  ax-cnre 10232  ax-pre-lttri 10233  ax-pre-lttrn 10234  ax-pre-ltadd 10235  ax-pre-mulgt0 10236  ax-riotaBAD 34776
This theorem depends on definitions:  df-bi 198  df-an 384  df-or 864  df-3or 1099  df-3an 1100  df-tru 1637  df-fal 1640  df-ex 1856  df-nf 1861  df-sb 2053  df-eu 2625  df-mo 2626  df-clab 2761  df-cleq 2767  df-clel 2770  df-nfc 2905  df-ne 2947  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3357  df-sbc 3594  df-csb 3689  df-dif 3732  df-un 3734  df-in 3736  df-ss 3743  df-pss 3745  df-nul 4074  df-if 4236  df-pw 4309  df-sn 4327  df-pr 4329  df-tp 4331  df-op 4333  df-uni 4586  df-int 4623  df-iun 4667  df-iin 4668  df-br 4798  df-opab 4860  df-mpt 4877  df-tr 4900  df-id 5171  df-eprel 5176  df-po 5184  df-so 5185  df-fr 5222  df-we 5224  df-xp 5269  df-rel 5270  df-cnv 5271  df-co 5272  df-dm 5273  df-rn 5274  df-res 5275  df-ima 5276  df-pred 5834  df-ord 5880  df-on 5881  df-lim 5882  df-suc 5883  df-iota 6005  df-fun 6044  df-fn 6045  df-f 6046  df-f1 6047  df-fo 6048  df-f1o 6049  df-fv 6050  df-riota 6773  df-ov 6815  df-oprab 6816  df-mpt2 6817  df-om 7234  df-1st 7336  df-2nd 7337  df-tpos 7525  df-undef 7572  df-wrecs 7580  df-recs 7642  df-rdg 7680  df-1o 7734  df-oadd 7738  df-er 7917  df-map 8032  df-en 8131  df-dom 8132  df-sdom 8133  df-fin 8134  df-pnf 10299  df-mnf 10300  df-xr 10301  df-ltxr 10302  df-le 10303  df-sub 10491  df-neg 10492  df-nn 11244  df-2 11302  df-3 11303  df-4 11304  df-5 11305  df-6 11306  df-n0 11517  df-z 11602  df-uz 11911  df-fz 12556  df-struct 16086  df-ndx 16087  df-slot 16088  df-base 16090  df-sets 16091  df-ress 16092  df-plusg 16182  df-mulr 16183  df-sca 16185  df-vsca 16186  df-0g 16330  df-preset 17156  df-poset 17174  df-plt 17186  df-lub 17202  df-glb 17203  df-join 17204  df-meet 17205  df-p0 17267  df-p1 17268  df-lat 17274  df-clat 17336  df-mgm 17470  df-sgrp 17512  df-mnd 17523  df-submnd 17564  df-grp 17653  df-minusg 17654  df-sbg 17655  df-subg 17819  df-cntz 17977  df-lsm 18278  df-cmn 18422  df-abl 18423  df-mgp 18718  df-ur 18730  df-ring 18777  df-oppr 18851  df-dvdsr 18869  df-unit 18870  df-invr 18900  df-dvr 18911  df-drng 18979  df-lmod 19095  df-lss 19163  df-lsp 19205  df-lvec 19336  df-lsatoms 34800  df-lshyp 34801  df-lfl 34882  df-lkr 34910  df-oposet 35000  df-ol 35002  df-oml 35003  df-covers 35090  df-ats 35091  df-atl 35122  df-cvlat 35146  df-hlat 35175  df-llines 35322  df-lplanes 35323  df-lvols 35324  df-lines 35325  df-psubsp 35327  df-pmap 35328  df-padd 35620  df-lhyp 35812  df-laut 35813  df-ldil 35928  df-ltrn 35929  df-trl 35984  df-tgrp 36568  df-tendo 36580  df-edring 36582  df-dveca 36828  df-disoa 36854  df-dvech 36904  df-dib 36964  df-dic 36998  df-dih 37054  df-doch 37173  df-djh 37220
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator