![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcf1o | Structured version Visualization version GIF version |
Description: Define a function 𝐽 that provides a bijection from nonzero vectors 𝑉 to nonzero functionals with closed kernels 𝐶. (Contributed by NM, 22-Feb-2015.) |
Ref | Expression |
---|---|
lcf1o.h | ⊢ 𝐻 = (LHyp‘𝐾) |
lcf1o.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
lcf1o.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
lcf1o.v | ⊢ 𝑉 = (Base‘𝑈) |
lcf1o.a | ⊢ + = (+g‘𝑈) |
lcf1o.t | ⊢ · = ( ·𝑠 ‘𝑈) |
lcf1o.s | ⊢ 𝑆 = (Scalar‘𝑈) |
lcf1o.r | ⊢ 𝑅 = (Base‘𝑆) |
lcf1o.z | ⊢ 0 = (0g‘𝑈) |
lcf1o.f | ⊢ 𝐹 = (LFnl‘𝑈) |
lcf1o.l | ⊢ 𝐿 = (LKer‘𝑈) |
lcf1o.d | ⊢ 𝐷 = (LDual‘𝑈) |
lcf1o.q | ⊢ 𝑄 = (0g‘𝐷) |
lcf1o.c | ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} |
lcf1o.j | ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) |
lcflo.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
Ref | Expression |
---|---|
lcf1o | ⊢ (𝜑 → 𝐽:(𝑉 ∖ { 0 })–1-1-onto→(𝐶 ∖ {𝑄})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcf1o.h | . 2 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | lcf1o.o | . 2 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
3 | lcf1o.u | . 2 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
4 | lcf1o.v | . 2 ⊢ 𝑉 = (Base‘𝑈) | |
5 | lcf1o.a | . 2 ⊢ + = (+g‘𝑈) | |
6 | lcf1o.t | . 2 ⊢ · = ( ·𝑠 ‘𝑈) | |
7 | lcf1o.s | . 2 ⊢ 𝑆 = (Scalar‘𝑈) | |
8 | lcf1o.r | . 2 ⊢ 𝑅 = (Base‘𝑆) | |
9 | lcf1o.z | . 2 ⊢ 0 = (0g‘𝑈) | |
10 | lcf1o.f | . 2 ⊢ 𝐹 = (LFnl‘𝑈) | |
11 | lcf1o.l | . 2 ⊢ 𝐿 = (LKer‘𝑈) | |
12 | lcf1o.d | . 2 ⊢ 𝐷 = (LDual‘𝑈) | |
13 | lcf1o.q | . 2 ⊢ 𝑄 = (0g‘𝐷) | |
14 | lcf1o.c | . 2 ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} | |
15 | lcf1o.j | . . 3 ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) | |
16 | oveq1 6697 | . . . . . . . . . . 11 ⊢ (𝑤 = 𝑧 → (𝑤 + (𝑘 · 𝑥)) = (𝑧 + (𝑘 · 𝑥))) | |
17 | 16 | eqeq2d 2661 | . . . . . . . . . 10 ⊢ (𝑤 = 𝑧 → (𝑣 = (𝑤 + (𝑘 · 𝑥)) ↔ 𝑣 = (𝑧 + (𝑘 · 𝑥)))) |
18 | 17 | cbvrexv 3202 | . . . . . . . . 9 ⊢ (∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)) ↔ ∃𝑧 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑧 + (𝑘 · 𝑥))) |
19 | oveq1 6697 | . . . . . . . . . . . 12 ⊢ (𝑘 = 𝑙 → (𝑘 · 𝑥) = (𝑙 · 𝑥)) | |
20 | 19 | oveq2d 6706 | . . . . . . . . . . 11 ⊢ (𝑘 = 𝑙 → (𝑧 + (𝑘 · 𝑥)) = (𝑧 + (𝑙 · 𝑥))) |
21 | 20 | eqeq2d 2661 | . . . . . . . . . 10 ⊢ (𝑘 = 𝑙 → (𝑣 = (𝑧 + (𝑘 · 𝑥)) ↔ 𝑣 = (𝑧 + (𝑙 · 𝑥)))) |
22 | 21 | rexbidv 3081 | . . . . . . . . 9 ⊢ (𝑘 = 𝑙 → (∃𝑧 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑧 + (𝑘 · 𝑥)) ↔ ∃𝑧 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑧 + (𝑙 · 𝑥)))) |
23 | 18, 22 | syl5bb 272 | . . . . . . . 8 ⊢ (𝑘 = 𝑙 → (∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)) ↔ ∃𝑧 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑧 + (𝑙 · 𝑥)))) |
24 | 23 | cbvriotav 6662 | . . . . . . 7 ⊢ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))) = (℩𝑙 ∈ 𝑅 ∃𝑧 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑧 + (𝑙 · 𝑥))) |
25 | eqeq1 2655 | . . . . . . . . 9 ⊢ (𝑣 = 𝑢 → (𝑣 = (𝑧 + (𝑙 · 𝑥)) ↔ 𝑢 = (𝑧 + (𝑙 · 𝑥)))) | |
26 | 25 | rexbidv 3081 | . . . . . . . 8 ⊢ (𝑣 = 𝑢 → (∃𝑧 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑧 + (𝑙 · 𝑥)) ↔ ∃𝑧 ∈ ( ⊥ ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥)))) |
27 | 26 | riotabidv 6653 | . . . . . . 7 ⊢ (𝑣 = 𝑢 → (℩𝑙 ∈ 𝑅 ∃𝑧 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑧 + (𝑙 · 𝑥))) = (℩𝑙 ∈ 𝑅 ∃𝑧 ∈ ( ⊥ ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥)))) |
28 | 24, 27 | syl5eq 2697 | . . . . . 6 ⊢ (𝑣 = 𝑢 → (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))) = (℩𝑙 ∈ 𝑅 ∃𝑧 ∈ ( ⊥ ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥)))) |
29 | 28 | cbvmptv 4783 | . . . . 5 ⊢ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) = (𝑢 ∈ 𝑉 ↦ (℩𝑙 ∈ 𝑅 ∃𝑧 ∈ ( ⊥ ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥)))) |
30 | sneq 4220 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → {𝑥} = {𝑦}) | |
31 | 30 | fveq2d 6233 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → ( ⊥ ‘{𝑥}) = ( ⊥ ‘{𝑦})) |
32 | oveq2 6698 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑦 → (𝑙 · 𝑥) = (𝑙 · 𝑦)) | |
33 | 32 | oveq2d 6706 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → (𝑧 + (𝑙 · 𝑥)) = (𝑧 + (𝑙 · 𝑦))) |
34 | 33 | eqeq2d 2661 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝑢 = (𝑧 + (𝑙 · 𝑥)) ↔ 𝑢 = (𝑧 + (𝑙 · 𝑦)))) |
35 | 31, 34 | rexeqbidv 3183 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (∃𝑧 ∈ ( ⊥ ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥)) ↔ ∃𝑧 ∈ ( ⊥ ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦)))) |
36 | 35 | riotabidv 6653 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (℩𝑙 ∈ 𝑅 ∃𝑧 ∈ ( ⊥ ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥))) = (℩𝑙 ∈ 𝑅 ∃𝑧 ∈ ( ⊥ ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦)))) |
37 | 36 | mpteq2dv 4778 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑢 ∈ 𝑉 ↦ (℩𝑙 ∈ 𝑅 ∃𝑧 ∈ ( ⊥ ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥)))) = (𝑢 ∈ 𝑉 ↦ (℩𝑙 ∈ 𝑅 ∃𝑧 ∈ ( ⊥ ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦))))) |
38 | 29, 37 | syl5eq 2697 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) = (𝑢 ∈ 𝑉 ↦ (℩𝑙 ∈ 𝑅 ∃𝑧 ∈ ( ⊥ ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦))))) |
39 | 38 | cbvmptv 4783 | . . 3 ⊢ (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) = (𝑦 ∈ (𝑉 ∖ { 0 }) ↦ (𝑢 ∈ 𝑉 ↦ (℩𝑙 ∈ 𝑅 ∃𝑧 ∈ ( ⊥ ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦))))) |
40 | 15, 39 | eqtri 2673 | . 2 ⊢ 𝐽 = (𝑦 ∈ (𝑉 ∖ { 0 }) ↦ (𝑢 ∈ 𝑉 ↦ (℩𝑙 ∈ 𝑅 ∃𝑧 ∈ ( ⊥ ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦))))) |
41 | lcflo.k | . 2 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
42 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 40, 41 | lcfrlem9 37156 | 1 ⊢ (𝜑 → 𝐽:(𝑉 ∖ { 0 })–1-1-onto→(𝐶 ∖ {𝑄})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∃wrex 2942 {crab 2945 ∖ cdif 3604 {csn 4210 ↦ cmpt 4762 –1-1-onto→wf1o 5925 ‘cfv 5926 ℩crio 6650 (class class class)co 6690 Basecbs 15904 +gcplusg 15988 Scalarcsca 15991 ·𝑠 cvsca 15992 0gc0g 16147 LFnlclfn 34662 LKerclk 34690 LDualcld 34728 HLchlt 34955 LHypclh 35588 DVecHcdvh 36684 ocHcoch 36953 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-riotaBAD 34557 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-fal 1529 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-iin 4555 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-of 6939 df-om 7108 df-1st 7210 df-2nd 7211 df-tpos 7397 df-undef 7444 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-oadd 7609 df-er 7787 df-map 7901 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-5 11120 df-6 11121 df-n0 11331 df-z 11416 df-uz 11726 df-fz 12365 df-struct 15906 df-ndx 15907 df-slot 15908 df-base 15910 df-sets 15911 df-ress 15912 df-plusg 16001 df-mulr 16002 df-sca 16004 df-vsca 16005 df-0g 16149 df-preset 16975 df-poset 16993 df-plt 17005 df-lub 17021 df-glb 17022 df-join 17023 df-meet 17024 df-p0 17086 df-p1 17087 df-lat 17093 df-clat 17155 df-mgm 17289 df-sgrp 17331 df-mnd 17342 df-submnd 17383 df-grp 17472 df-minusg 17473 df-sbg 17474 df-subg 17638 df-cntz 17796 df-lsm 18097 df-cmn 18241 df-abl 18242 df-mgp 18536 df-ur 18548 df-ring 18595 df-oppr 18669 df-dvdsr 18687 df-unit 18688 df-invr 18718 df-dvr 18729 df-drng 18797 df-lmod 18913 df-lss 18981 df-lsp 19020 df-lvec 19151 df-lsatoms 34581 df-lshyp 34582 df-lfl 34663 df-lkr 34691 df-ldual 34729 df-oposet 34781 df-ol 34783 df-oml 34784 df-covers 34871 df-ats 34872 df-atl 34903 df-cvlat 34927 df-hlat 34956 df-llines 35102 df-lplanes 35103 df-lvols 35104 df-lines 35105 df-psubsp 35107 df-pmap 35108 df-padd 35400 df-lhyp 35592 df-laut 35593 df-ldil 35708 df-ltrn 35709 df-trl 35764 df-tgrp 36348 df-tendo 36360 df-edring 36362 df-dveca 36608 df-disoa 36635 df-dvech 36685 df-dib 36745 df-dic 36779 df-dih 36835 df-doch 36954 df-djh 37001 |
This theorem is referenced by: lcfrlem13 37161 hvmap1o 37369 |
Copyright terms: Public domain | W3C validator |