Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcdvs Structured version   Visualization version   GIF version

Theorem lcdvs 37413
 Description: Scalar product for the closed kernel vector space dual. (Contributed by NM, 28-Mar-2015.)
Hypotheses
Ref Expression
lcdvs.h 𝐻 = (LHyp‘𝐾)
lcdvs.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcdvs.d 𝐷 = (LDual‘𝑈)
lcdvs.t · = ( ·𝑠𝐷)
lcdvs.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
lcdvs.m = ( ·𝑠𝐶)
lcdvs.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
Assertion
Ref Expression
lcdvs (𝜑 = · )

Proof of Theorem lcdvs
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 lcdvs.h . . . 4 𝐻 = (LHyp‘𝐾)
2 eqid 2771 . . . 4 ((ocH‘𝐾)‘𝑊) = ((ocH‘𝐾)‘𝑊)
3 lcdvs.c . . . 4 𝐶 = ((LCDual‘𝐾)‘𝑊)
4 lcdvs.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
5 eqid 2771 . . . 4 (LFnl‘𝑈) = (LFnl‘𝑈)
6 eqid 2771 . . . 4 (LKer‘𝑈) = (LKer‘𝑈)
7 lcdvs.d . . . 4 𝐷 = (LDual‘𝑈)
8 lcdvs.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
91, 2, 3, 4, 5, 6, 7, 8lcdval 37399 . . 3 (𝜑𝐶 = (𝐷s {𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)}))
109fveq2d 6337 . 2 (𝜑 → ( ·𝑠𝐶) = ( ·𝑠 ‘(𝐷s {𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)})))
11 lcdvs.m . 2 = ( ·𝑠𝐶)
12 fvex 6344 . . . 4 (LFnl‘𝑈) ∈ V
1312rabex 4947 . . 3 {𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)} ∈ V
14 eqid 2771 . . . 4 (𝐷s {𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)}) = (𝐷s {𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)})
15 lcdvs.t . . . 4 · = ( ·𝑠𝐷)
1614, 15ressvsca 16240 . . 3 ({𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)} ∈ V → · = ( ·𝑠 ‘(𝐷s {𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)})))
1713, 16ax-mp 5 . 2 · = ( ·𝑠 ‘(𝐷s {𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)}))
1810, 11, 173eqtr4g 2830 1 (𝜑 = · )
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382   = wceq 1631   ∈ wcel 2145  {crab 3065  Vcvv 3351  ‘cfv 6030  (class class class)co 6796   ↾s cress 16065   ·𝑠 cvsca 16153  LFnlclfn 34866  LKerclk 34894  LDualcld 34932  HLchlt 35159  LHypclh 35793  DVecHcdvh 36888  ocHcoch 37157  LCDualclcd 37396 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-om 7217  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-er 7900  df-en 8114  df-dom 8115  df-sdom 8116  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-nn 11227  df-2 11285  df-3 11286  df-4 11287  df-5 11288  df-6 11289  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-vsca 16166  df-lcdual 37397 This theorem is referenced by:  lcdvsval  37414  lcdlkreq2N  37433
 Copyright terms: Public domain W3C validator