Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcdvaddval Structured version   Visualization version   GIF version

Theorem lcdvaddval 37423
Description: The value of the value of vector addition in the closed kernel vector space dual. (Contributed by NM, 10-Jun-2015.)
Hypotheses
Ref Expression
lcdvaddval.h 𝐻 = (LHyp‘𝐾)
lcdvaddval.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcdvaddval.v 𝑉 = (Base‘𝑈)
lcdvaddval.r 𝑅 = (Scalar‘𝑈)
lcdvaddval.a + = (+g𝑅)
lcdvaddval.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
lcdvaddval.d 𝐷 = (Base‘𝐶)
lcdvaddval.p = (+g𝐶)
lcdvaddval.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
lcdvaddval.f (𝜑𝐹𝐷)
lcdvaddval.g (𝜑𝐺𝐷)
lcdvaddval.x (𝜑𝑋𝑉)
Assertion
Ref Expression
lcdvaddval (𝜑 → ((𝐹 𝐺)‘𝑋) = ((𝐹𝑋) + (𝐺𝑋)))

Proof of Theorem lcdvaddval
StepHypRef Expression
1 lcdvaddval.h . . . . 5 𝐻 = (LHyp‘𝐾)
2 lcdvaddval.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 eqid 2774 . . . . 5 (LDual‘𝑈) = (LDual‘𝑈)
4 eqid 2774 . . . . 5 (+g‘(LDual‘𝑈)) = (+g‘(LDual‘𝑈))
5 lcdvaddval.c . . . . 5 𝐶 = ((LCDual‘𝐾)‘𝑊)
6 lcdvaddval.p . . . . 5 = (+g𝐶)
7 lcdvaddval.k . . . . 5 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
81, 2, 3, 4, 5, 6, 7lcdvadd 37422 . . . 4 (𝜑 = (+g‘(LDual‘𝑈)))
98oveqd 6829 . . 3 (𝜑 → (𝐹 𝐺) = (𝐹(+g‘(LDual‘𝑈))𝐺))
109fveq1d 6350 . 2 (𝜑 → ((𝐹 𝐺)‘𝑋) = ((𝐹(+g‘(LDual‘𝑈))𝐺)‘𝑋))
11 lcdvaddval.v . . 3 𝑉 = (Base‘𝑈)
12 lcdvaddval.r . . 3 𝑅 = (Scalar‘𝑈)
13 lcdvaddval.a . . 3 + = (+g𝑅)
14 eqid 2774 . . 3 (LFnl‘𝑈) = (LFnl‘𝑈)
151, 2, 7dvhlmod 36935 . . 3 (𝜑𝑈 ∈ LMod)
16 lcdvaddval.d . . . 4 𝐷 = (Base‘𝐶)
17 lcdvaddval.f . . . 4 (𝜑𝐹𝐷)
181, 5, 16, 2, 14, 7, 17lcdvbaselfl 37420 . . 3 (𝜑𝐹 ∈ (LFnl‘𝑈))
19 lcdvaddval.g . . . 4 (𝜑𝐺𝐷)
201, 5, 16, 2, 14, 7, 19lcdvbaselfl 37420 . . 3 (𝜑𝐺 ∈ (LFnl‘𝑈))
21 lcdvaddval.x . . 3 (𝜑𝑋𝑉)
2211, 12, 13, 14, 3, 4, 15, 18, 20, 21ldualvaddval 34955 . 2 (𝜑 → ((𝐹(+g‘(LDual‘𝑈))𝐺)‘𝑋) = ((𝐹𝑋) + (𝐺𝑋)))
2310, 22eqtrd 2808 1 (𝜑 → ((𝐹 𝐺)‘𝑋) = ((𝐹𝑋) + (𝐺𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1634  wcel 2148  cfv 6042  (class class class)co 6812  Basecbs 16084  +gcplusg 16169  Scalarcsca 16172  LFnlclfn 34881  LDualcld 34947  HLchlt 35174  LHypclh 35808  DVecHcdvh 36903  LCDualclcd 37411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1873  ax-4 1888  ax-5 1994  ax-6 2060  ax-7 2096  ax-8 2150  ax-9 2157  ax-10 2177  ax-11 2193  ax-12 2206  ax-13 2411  ax-ext 2754  ax-rep 4917  ax-sep 4928  ax-nul 4936  ax-pow 4988  ax-pr 5048  ax-un 7117  ax-cnex 10215  ax-resscn 10216  ax-1cn 10217  ax-icn 10218  ax-addcl 10219  ax-addrcl 10220  ax-mulcl 10221  ax-mulrcl 10222  ax-mulcom 10223  ax-addass 10224  ax-mulass 10225  ax-distr 10226  ax-i2m1 10227  ax-1ne0 10228  ax-1rid 10229  ax-rnegex 10230  ax-rrecex 10231  ax-cnre 10232  ax-pre-lttri 10233  ax-pre-lttrn 10234  ax-pre-ltadd 10235  ax-pre-mulgt0 10236  ax-riotaBAD 34776
This theorem depends on definitions:  df-bi 198  df-an 384  df-or 864  df-3or 1099  df-3an 1100  df-tru 1637  df-fal 1640  df-ex 1856  df-nf 1861  df-sb 2053  df-eu 2625  df-mo 2626  df-clab 2761  df-cleq 2767  df-clel 2770  df-nfc 2905  df-ne 2947  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3357  df-sbc 3594  df-csb 3689  df-dif 3732  df-un 3734  df-in 3736  df-ss 3743  df-pss 3745  df-nul 4074  df-if 4236  df-pw 4309  df-sn 4327  df-pr 4329  df-tp 4331  df-op 4333  df-uni 4586  df-int 4623  df-iun 4667  df-iin 4668  df-br 4798  df-opab 4860  df-mpt 4877  df-tr 4900  df-id 5171  df-eprel 5176  df-po 5184  df-so 5185  df-fr 5222  df-we 5224  df-xp 5269  df-rel 5270  df-cnv 5271  df-co 5272  df-dm 5273  df-rn 5274  df-res 5275  df-ima 5276  df-pred 5834  df-ord 5880  df-on 5881  df-lim 5882  df-suc 5883  df-iota 6005  df-fun 6044  df-fn 6045  df-f 6046  df-f1 6047  df-fo 6048  df-f1o 6049  df-fv 6050  df-riota 6773  df-ov 6815  df-oprab 6816  df-mpt2 6817  df-of 7065  df-om 7234  df-1st 7336  df-2nd 7337  df-tpos 7525  df-undef 7572  df-wrecs 7580  df-recs 7642  df-rdg 7680  df-1o 7734  df-oadd 7738  df-er 7917  df-map 8032  df-en 8131  df-dom 8132  df-sdom 8133  df-fin 8134  df-pnf 10299  df-mnf 10300  df-xr 10301  df-ltxr 10302  df-le 10303  df-sub 10491  df-neg 10492  df-nn 11244  df-2 11302  df-3 11303  df-4 11304  df-5 11305  df-6 11306  df-n0 11517  df-z 11602  df-uz 11911  df-fz 12556  df-struct 16086  df-ndx 16087  df-slot 16088  df-base 16090  df-sets 16091  df-ress 16092  df-plusg 16182  df-mulr 16183  df-sca 16185  df-vsca 16186  df-0g 16330  df-preset 17156  df-poset 17174  df-plt 17186  df-lub 17202  df-glb 17203  df-join 17204  df-meet 17205  df-p0 17267  df-p1 17268  df-lat 17274  df-clat 17336  df-mgm 17470  df-sgrp 17512  df-mnd 17523  df-grp 17653  df-minusg 17654  df-mgp 18718  df-ur 18730  df-ring 18777  df-oppr 18851  df-dvdsr 18869  df-unit 18870  df-invr 18900  df-dvr 18911  df-drng 18979  df-lmod 19095  df-lvec 19336  df-lfl 34882  df-ldual 34948  df-oposet 35000  df-ol 35002  df-oml 35003  df-covers 35090  df-ats 35091  df-atl 35122  df-cvlat 35146  df-hlat 35175  df-llines 35322  df-lplanes 35323  df-lvols 35324  df-lines 35325  df-psubsp 35327  df-pmap 35328  df-padd 35620  df-lhyp 35812  df-laut 35813  df-ldil 35928  df-ltrn 35929  df-trl 35984  df-tendo 36580  df-edring 36582  df-dvech 36904  df-lcdual 37412
This theorem is referenced by:  lcdvsubval  37443  hdmaplna2  37735
  Copyright terms: Public domain W3C validator