MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lbzbi Structured version   Visualization version   GIF version

Theorem lbzbi 11814
Description: If a set of reals is bounded below, it is bounded below by an integer. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
lbzbi (𝐴 ⊆ ℝ → (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦 ↔ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦))
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem lbzbi
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfv 1883 . . 3 𝑥 𝐴 ⊆ ℝ
2 nfre1 3034 . . 3 𝑥𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦
3 btwnz 11517 . . . . . . 7 (𝑥 ∈ ℝ → (∃𝑧 ∈ ℤ 𝑧 < 𝑥 ∧ ∃𝑧 ∈ ℤ 𝑥 < 𝑧))
43simpld 474 . . . . . 6 (𝑥 ∈ ℝ → ∃𝑧 ∈ ℤ 𝑧 < 𝑥)
5 ssel2 3631 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴 ⊆ ℝ ∧ 𝑦𝐴) → 𝑦 ∈ ℝ)
6 zre 11419 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 ∈ ℤ → 𝑧 ∈ ℝ)
7 ltleletr 10168 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑧 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑧 < 𝑥𝑥𝑦) → 𝑧𝑦))
86, 7syl3an1 1399 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑧 < 𝑥𝑥𝑦) → 𝑧𝑦))
98expd 451 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑧 < 𝑥 → (𝑥𝑦𝑧𝑦)))
1093expia 1286 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → (𝑦 ∈ ℝ → (𝑧 < 𝑥 → (𝑥𝑦𝑧𝑦))))
115, 10syl5 34 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → ((𝐴 ⊆ ℝ ∧ 𝑦𝐴) → (𝑧 < 𝑥 → (𝑥𝑦𝑧𝑦))))
1211expdimp 452 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) ∧ 𝐴 ⊆ ℝ) → (𝑦𝐴 → (𝑧 < 𝑥 → (𝑥𝑦𝑧𝑦))))
1312com23 86 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) ∧ 𝐴 ⊆ ℝ) → (𝑧 < 𝑥 → (𝑦𝐴 → (𝑥𝑦𝑧𝑦))))
1413imp 444 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) ∧ 𝐴 ⊆ ℝ) ∧ 𝑧 < 𝑥) → (𝑦𝐴 → (𝑥𝑦𝑧𝑦)))
1514ralrimiv 2994 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) ∧ 𝐴 ⊆ ℝ) ∧ 𝑧 < 𝑥) → ∀𝑦𝐴 (𝑥𝑦𝑧𝑦))
16 ralim 2977 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑦𝐴 (𝑥𝑦𝑧𝑦) → (∀𝑦𝐴 𝑥𝑦 → ∀𝑦𝐴 𝑧𝑦))
1715, 16syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) ∧ 𝐴 ⊆ ℝ) ∧ 𝑧 < 𝑥) → (∀𝑦𝐴 𝑥𝑦 → ∀𝑦𝐴 𝑧𝑦))
1817ex 449 . . . . . . . . . . . . . . . . . . 19 (((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) ∧ 𝐴 ⊆ ℝ) → (𝑧 < 𝑥 → (∀𝑦𝐴 𝑥𝑦 → ∀𝑦𝐴 𝑧𝑦)))
1918anasss 680 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ ℤ ∧ (𝑥 ∈ ℝ ∧ 𝐴 ⊆ ℝ)) → (𝑧 < 𝑥 → (∀𝑦𝐴 𝑥𝑦 → ∀𝑦𝐴 𝑧𝑦)))
2019expcom 450 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ ∧ 𝐴 ⊆ ℝ) → (𝑧 ∈ ℤ → (𝑧 < 𝑥 → (∀𝑦𝐴 𝑥𝑦 → ∀𝑦𝐴 𝑧𝑦))))
2120com23 86 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝐴 ⊆ ℝ) → (𝑧 < 𝑥 → (𝑧 ∈ ℤ → (∀𝑦𝐴 𝑥𝑦 → ∀𝑦𝐴 𝑧𝑦))))
2221imp 444 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ ∧ 𝐴 ⊆ ℝ) ∧ 𝑧 < 𝑥) → (𝑧 ∈ ℤ → (∀𝑦𝐴 𝑥𝑦 → ∀𝑦𝐴 𝑧𝑦)))
2322imdistand 728 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ ∧ 𝐴 ⊆ ℝ) ∧ 𝑧 < 𝑥) → ((𝑧 ∈ ℤ ∧ ∀𝑦𝐴 𝑥𝑦) → (𝑧 ∈ ℤ ∧ ∀𝑦𝐴 𝑧𝑦)))
24 breq1 4688 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → (𝑥𝑦𝑧𝑦))
2524ralbidv 3015 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → (∀𝑦𝐴 𝑥𝑦 ↔ ∀𝑦𝐴 𝑧𝑦))
2625rspcev 3340 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℤ ∧ ∀𝑦𝐴 𝑧𝑦) → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦)
2723, 26syl6 35 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ ∧ 𝐴 ⊆ ℝ) ∧ 𝑧 < 𝑥) → ((𝑧 ∈ ℤ ∧ ∀𝑦𝐴 𝑥𝑦) → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦))
2827ex 449 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝐴 ⊆ ℝ) → (𝑧 < 𝑥 → ((𝑧 ∈ ℤ ∧ ∀𝑦𝐴 𝑥𝑦) → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦)))
2928com23 86 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝐴 ⊆ ℝ) → ((𝑧 ∈ ℤ ∧ ∀𝑦𝐴 𝑥𝑦) → (𝑧 < 𝑥 → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦)))
3029ancomsd 469 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝐴 ⊆ ℝ) → ((∀𝑦𝐴 𝑥𝑦𝑧 ∈ ℤ) → (𝑧 < 𝑥 → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦)))
3130expdimp 452 . . . . . . . . 9 (((𝑥 ∈ ℝ ∧ 𝐴 ⊆ ℝ) ∧ ∀𝑦𝐴 𝑥𝑦) → (𝑧 ∈ ℤ → (𝑧 < 𝑥 → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦)))
3231rexlimdv 3059 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ 𝐴 ⊆ ℝ) ∧ ∀𝑦𝐴 𝑥𝑦) → (∃𝑧 ∈ ℤ 𝑧 < 𝑥 → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦))
3332anasss 680 . . . . . . 7 ((𝑥 ∈ ℝ ∧ (𝐴 ⊆ ℝ ∧ ∀𝑦𝐴 𝑥𝑦)) → (∃𝑧 ∈ ℤ 𝑧 < 𝑥 → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦))
3433expcom 450 . . . . . 6 ((𝐴 ⊆ ℝ ∧ ∀𝑦𝐴 𝑥𝑦) → (𝑥 ∈ ℝ → (∃𝑧 ∈ ℤ 𝑧 < 𝑥 → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦)))
354, 34mpdi 45 . . . . 5 ((𝐴 ⊆ ℝ ∧ ∀𝑦𝐴 𝑥𝑦) → (𝑥 ∈ ℝ → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦))
3635ex 449 . . . 4 (𝐴 ⊆ ℝ → (∀𝑦𝐴 𝑥𝑦 → (𝑥 ∈ ℝ → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦)))
3736com23 86 . . 3 (𝐴 ⊆ ℝ → (𝑥 ∈ ℝ → (∀𝑦𝐴 𝑥𝑦 → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦)))
381, 2, 37rexlimd 3055 . 2 (𝐴 ⊆ ℝ → (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦 → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦))
39 zssre 11422 . . 3 ℤ ⊆ ℝ
40 ssrexv 3700 . . 3 (ℤ ⊆ ℝ → (∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦))
4139, 40ax-mp 5 . 2 (∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦)
4238, 41impbid1 215 1 (𝐴 ⊆ ℝ → (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦 ↔ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054  wcel 2030  wral 2941  wrex 2942  wss 3607   class class class wbr 4685  cr 9973   < clt 10112  cle 10113  cz 11415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-z 11416
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator