MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lbspss Structured version   Visualization version   GIF version

Theorem lbspss 19130
Description: No proper subset of a basis spans the space. (Contributed by Mario Carneiro, 25-Jun-2014.)
Hypotheses
Ref Expression
lbsind2.j 𝐽 = (LBasis‘𝑊)
lbsind2.n 𝑁 = (LSpan‘𝑊)
lbsind2.f 𝐹 = (Scalar‘𝑊)
lbsind2.o 1 = (1r𝐹)
lbsind2.z 0 = (0g𝐹)
lbspss.v 𝑉 = (Base‘𝑊)
Assertion
Ref Expression
lbspss (((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) → (𝑁𝐶) ≠ 𝑉)

Proof of Theorem lbspss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pssnel 4072 . . 3 (𝐶𝐵 → ∃𝑥(𝑥𝐵 ∧ ¬ 𝑥𝐶))
213ad2ant3 1104 . 2 (((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) → ∃𝑥(𝑥𝐵 ∧ ¬ 𝑥𝐶))
3 simpl2 1085 . . . . . 6 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → 𝐵𝐽)
4 lbspss.v . . . . . . 7 𝑉 = (Base‘𝑊)
5 lbsind2.j . . . . . . 7 𝐽 = (LBasis‘𝑊)
64, 5lbsss 19125 . . . . . 6 (𝐵𝐽𝐵𝑉)
73, 6syl 17 . . . . 5 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → 𝐵𝑉)
8 simprl 809 . . . . 5 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → 𝑥𝐵)
97, 8sseldd 3637 . . . 4 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → 𝑥𝑉)
10 simpl1l 1132 . . . . . 6 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → 𝑊 ∈ LMod)
117ssdifssd 3781 . . . . . 6 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → (𝐵 ∖ {𝑥}) ⊆ 𝑉)
12 simpl3 1086 . . . . . . . . . . 11 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → 𝐶𝐵)
1312pssssd 3737 . . . . . . . . . 10 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → 𝐶𝐵)
1413sseld 3635 . . . . . . . . 9 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → (𝑦𝐶𝑦𝐵))
15 simprr 811 . . . . . . . . . . 11 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → ¬ 𝑥𝐶)
16 eleq1 2718 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (𝑦𝐶𝑥𝐶))
1716notbid 307 . . . . . . . . . . 11 (𝑦 = 𝑥 → (¬ 𝑦𝐶 ↔ ¬ 𝑥𝐶))
1815, 17syl5ibrcom 237 . . . . . . . . . 10 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → (𝑦 = 𝑥 → ¬ 𝑦𝐶))
1918necon2ad 2838 . . . . . . . . 9 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → (𝑦𝐶𝑦𝑥))
2014, 19jcad 554 . . . . . . . 8 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → (𝑦𝐶 → (𝑦𝐵𝑦𝑥)))
21 eldifsn 4350 . . . . . . . 8 (𝑦 ∈ (𝐵 ∖ {𝑥}) ↔ (𝑦𝐵𝑦𝑥))
2220, 21syl6ibr 242 . . . . . . 7 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → (𝑦𝐶𝑦 ∈ (𝐵 ∖ {𝑥})))
2322ssrdv 3642 . . . . . 6 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → 𝐶 ⊆ (𝐵 ∖ {𝑥}))
24 lbsind2.n . . . . . . 7 𝑁 = (LSpan‘𝑊)
254, 24lspss 19032 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝐵 ∖ {𝑥}) ⊆ 𝑉𝐶 ⊆ (𝐵 ∖ {𝑥})) → (𝑁𝐶) ⊆ (𝑁‘(𝐵 ∖ {𝑥})))
2610, 11, 23, 25syl3anc 1366 . . . . 5 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → (𝑁𝐶) ⊆ (𝑁‘(𝐵 ∖ {𝑥})))
27 simpl1r 1133 . . . . . 6 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → 10 )
28 lbsind2.f . . . . . . 7 𝐹 = (Scalar‘𝑊)
29 lbsind2.o . . . . . . 7 1 = (1r𝐹)
30 lbsind2.z . . . . . . 7 0 = (0g𝐹)
315, 24, 28, 29, 30lbsind2 19129 . . . . . 6 (((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝑥𝐵) → ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))
3210, 27, 3, 8, 31syl211anc 1372 . . . . 5 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))
3326, 32ssneldd 3639 . . . 4 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → ¬ 𝑥 ∈ (𝑁𝐶))
34 nelne1 2919 . . . 4 ((𝑥𝑉 ∧ ¬ 𝑥 ∈ (𝑁𝐶)) → 𝑉 ≠ (𝑁𝐶))
359, 33, 34syl2anc 694 . . 3 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → 𝑉 ≠ (𝑁𝐶))
3635necomd 2878 . 2 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → (𝑁𝐶) ≠ 𝑉)
372, 36exlimddv 1903 1 (((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) → (𝑁𝐶) ≠ 𝑉)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1054   = wceq 1523  wex 1744  wcel 2030  wne 2823  cdif 3604  wss 3607  wpss 3608  {csn 4210  cfv 5926  Basecbs 15904  Scalarcsca 15991  0gc0g 16147  1rcur 18547  LModclmod 18911  LSpanclspn 19019  LBasisclbs 19122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-plusg 16001  df-0g 16149  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-grp 17472  df-mgp 18536  df-ur 18548  df-ring 18595  df-lmod 18913  df-lss 18981  df-lsp 19020  df-lbs 19123
This theorem is referenced by:  islbs3  19203
  Copyright terms: Public domain W3C validator