MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lbslcic Structured version   Visualization version   GIF version

Theorem lbslcic 20403
Description: A module with a basis is isomorphic to a free module with the same cardinality. (Contributed by Stefan O'Rear, 26-Feb-2015.)
Hypotheses
Ref Expression
lbslcic.f 𝐹 = (Scalar‘𝑊)
lbslcic.j 𝐽 = (LBasis‘𝑊)
Assertion
Ref Expression
lbslcic ((𝑊 ∈ LMod ∧ 𝐵𝐽𝐼𝐵) → 𝑊𝑚 (𝐹 freeLMod 𝐼))

Proof of Theorem lbslcic
Dummy variables 𝑒 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 1133 . . 3 ((𝑊 ∈ LMod ∧ 𝐵𝐽𝐼𝐵) → 𝐼𝐵)
2 bren 8133 . . 3 (𝐼𝐵 ↔ ∃𝑒 𝑒:𝐼1-1-onto𝐵)
31, 2sylib 208 . 2 ((𝑊 ∈ LMod ∧ 𝐵𝐽𝐼𝐵) → ∃𝑒 𝑒:𝐼1-1-onto𝐵)
4 eqid 2761 . . . 4 (𝐹 freeLMod 𝐼) = (𝐹 freeLMod 𝐼)
5 eqid 2761 . . . 4 (Base‘(𝐹 freeLMod 𝐼)) = (Base‘(𝐹 freeLMod 𝐼))
6 eqid 2761 . . . 4 (Base‘𝑊) = (Base‘𝑊)
7 eqid 2761 . . . 4 ( ·𝑠𝑊) = ( ·𝑠𝑊)
8 eqid 2761 . . . 4 (LSpan‘𝑊) = (LSpan‘𝑊)
9 eqid 2761 . . . 4 (𝑥 ∈ (Base‘(𝐹 freeLMod 𝐼)) ↦ (𝑊 Σg (𝑥𝑓 ( ·𝑠𝑊)𝑒))) = (𝑥 ∈ (Base‘(𝐹 freeLMod 𝐼)) ↦ (𝑊 Σg (𝑥𝑓 ( ·𝑠𝑊)𝑒)))
10 simpl1 1228 . . . 4 (((𝑊 ∈ LMod ∧ 𝐵𝐽𝐼𝐵) ∧ 𝑒:𝐼1-1-onto𝐵) → 𝑊 ∈ LMod)
11 relen 8129 . . . . . . 7 Rel ≈
1211brrelexi 5316 . . . . . 6 (𝐼𝐵𝐼 ∈ V)
13123ad2ant3 1130 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐵𝐽𝐼𝐵) → 𝐼 ∈ V)
1413adantr 472 . . . 4 (((𝑊 ∈ LMod ∧ 𝐵𝐽𝐼𝐵) ∧ 𝑒:𝐼1-1-onto𝐵) → 𝐼 ∈ V)
15 lbslcic.f . . . . 5 𝐹 = (Scalar‘𝑊)
1615a1i 11 . . . 4 (((𝑊 ∈ LMod ∧ 𝐵𝐽𝐼𝐵) ∧ 𝑒:𝐼1-1-onto𝐵) → 𝐹 = (Scalar‘𝑊))
17 f1ofo 6307 . . . . 5 (𝑒:𝐼1-1-onto𝐵𝑒:𝐼onto𝐵)
1817adantl 473 . . . 4 (((𝑊 ∈ LMod ∧ 𝐵𝐽𝐼𝐵) ∧ 𝑒:𝐼1-1-onto𝐵) → 𝑒:𝐼onto𝐵)
19 lbslcic.j . . . . . . . . 9 𝐽 = (LBasis‘𝑊)
2019lbslinds 20395 . . . . . . . 8 𝐽 ⊆ (LIndS‘𝑊)
2120sseli 3741 . . . . . . 7 (𝐵𝐽𝐵 ∈ (LIndS‘𝑊))
22213ad2ant2 1129 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐵𝐽𝐼𝐵) → 𝐵 ∈ (LIndS‘𝑊))
2322adantr 472 . . . . 5 (((𝑊 ∈ LMod ∧ 𝐵𝐽𝐼𝐵) ∧ 𝑒:𝐼1-1-onto𝐵) → 𝐵 ∈ (LIndS‘𝑊))
24 f1of1 6299 . . . . . 6 (𝑒:𝐼1-1-onto𝐵𝑒:𝐼1-1𝐵)
2524adantl 473 . . . . 5 (((𝑊 ∈ LMod ∧ 𝐵𝐽𝐼𝐵) ∧ 𝑒:𝐼1-1-onto𝐵) → 𝑒:𝐼1-1𝐵)
26 f1linds 20387 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐵 ∈ (LIndS‘𝑊) ∧ 𝑒:𝐼1-1𝐵) → 𝑒 LIndF 𝑊)
2710, 23, 25, 26syl3anc 1477 . . . 4 (((𝑊 ∈ LMod ∧ 𝐵𝐽𝐼𝐵) ∧ 𝑒:𝐼1-1-onto𝐵) → 𝑒 LIndF 𝑊)
286, 19, 8lbssp 19302 . . . . . 6 (𝐵𝐽 → ((LSpan‘𝑊)‘𝐵) = (Base‘𝑊))
29283ad2ant2 1129 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐵𝐽𝐼𝐵) → ((LSpan‘𝑊)‘𝐵) = (Base‘𝑊))
3029adantr 472 . . . 4 (((𝑊 ∈ LMod ∧ 𝐵𝐽𝐼𝐵) ∧ 𝑒:𝐼1-1-onto𝐵) → ((LSpan‘𝑊)‘𝐵) = (Base‘𝑊))
314, 5, 6, 7, 8, 9, 10, 14, 16, 18, 27, 30indlcim 20402 . . 3 (((𝑊 ∈ LMod ∧ 𝐵𝐽𝐼𝐵) ∧ 𝑒:𝐼1-1-onto𝐵) → (𝑥 ∈ (Base‘(𝐹 freeLMod 𝐼)) ↦ (𝑊 Σg (𝑥𝑓 ( ·𝑠𝑊)𝑒))) ∈ ((𝐹 freeLMod 𝐼) LMIso 𝑊))
32 lmimcnv 19290 . . 3 ((𝑥 ∈ (Base‘(𝐹 freeLMod 𝐼)) ↦ (𝑊 Σg (𝑥𝑓 ( ·𝑠𝑊)𝑒))) ∈ ((𝐹 freeLMod 𝐼) LMIso 𝑊) → (𝑥 ∈ (Base‘(𝐹 freeLMod 𝐼)) ↦ (𝑊 Σg (𝑥𝑓 ( ·𝑠𝑊)𝑒))) ∈ (𝑊 LMIso (𝐹 freeLMod 𝐼)))
33 brlmici 19292 . . 3 ((𝑥 ∈ (Base‘(𝐹 freeLMod 𝐼)) ↦ (𝑊 Σg (𝑥𝑓 ( ·𝑠𝑊)𝑒))) ∈ (𝑊 LMIso (𝐹 freeLMod 𝐼)) → 𝑊𝑚 (𝐹 freeLMod 𝐼))
3431, 32, 333syl 18 . 2 (((𝑊 ∈ LMod ∧ 𝐵𝐽𝐼𝐵) ∧ 𝑒:𝐼1-1-onto𝐵) → 𝑊𝑚 (𝐹 freeLMod 𝐼))
353, 34exlimddv 2013 1 ((𝑊 ∈ LMod ∧ 𝐵𝐽𝐼𝐵) → 𝑊𝑚 (𝐹 freeLMod 𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1632  wex 1853  wcel 2140  Vcvv 3341   class class class wbr 4805  cmpt 4882  ccnv 5266  1-1wf1 6047  ontowfo 6048  1-1-ontowf1o 6049  cfv 6050  (class class class)co 6815  𝑓 cof 7062  cen 8121  Basecbs 16080  Scalarcsca 16167   ·𝑠 cvsca 16168   Σg cgsu 16324  LModclmod 19086  LSpanclspn 19194   LMIso clmim 19243  𝑚 clmic 19244  LBasisclbs 19297   freeLMod cfrlm 20313   LIndF clindf 20366  LIndSclinds 20367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-inf2 8714  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-int 4629  df-iun 4675  df-iin 4676  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-se 5227  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-isom 6059  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-of 7064  df-om 7233  df-1st 7335  df-2nd 7336  df-supp 7466  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-1o 7731  df-oadd 7735  df-er 7914  df-map 8028  df-ixp 8078  df-en 8125  df-dom 8126  df-sdom 8127  df-fin 8128  df-fsupp 8444  df-sup 8516  df-oi 8583  df-card 8976  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-nn 11234  df-2 11292  df-3 11293  df-4 11294  df-5 11295  df-6 11296  df-7 11297  df-8 11298  df-9 11299  df-n0 11506  df-z 11591  df-dec 11707  df-uz 11901  df-fz 12541  df-fzo 12681  df-seq 13017  df-hash 13333  df-struct 16082  df-ndx 16083  df-slot 16084  df-base 16086  df-sets 16087  df-ress 16088  df-plusg 16177  df-mulr 16178  df-sca 16180  df-vsca 16181  df-ip 16182  df-tset 16183  df-ple 16184  df-ds 16187  df-hom 16189  df-cco 16190  df-0g 16325  df-gsum 16326  df-prds 16331  df-pws 16333  df-mre 16469  df-mrc 16470  df-acs 16472  df-mgm 17464  df-sgrp 17506  df-mnd 17517  df-mhm 17557  df-submnd 17558  df-grp 17647  df-minusg 17648  df-sbg 17649  df-mulg 17763  df-subg 17813  df-ghm 17880  df-cntz 17971  df-cmn 18416  df-abl 18417  df-mgp 18711  df-ur 18723  df-ring 18770  df-subrg 19001  df-lmod 19088  df-lss 19156  df-lsp 19195  df-lmhm 19245  df-lmim 19246  df-lmic 19247  df-lbs 19298  df-sra 19395  df-rgmod 19396  df-nzr 19481  df-dsmm 20299  df-frlm 20314  df-uvc 20345  df-lindf 20368  df-linds 20369
This theorem is referenced by:  lmisfree  20404  frlmisfrlm  20410
  Copyright terms: Public domain W3C validator