![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lbsacsbs | Structured version Visualization version GIF version |
Description: Being a basis in a vector space is equivalent to being a basis in the associated algebraic closure system. Equivalent to islbs2 19376. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
lbsacsbs.1 | ⊢ 𝐴 = (LSubSp‘𝑊) |
lbsacsbs.2 | ⊢ 𝑁 = (mrCls‘𝐴) |
lbsacsbs.3 | ⊢ 𝑋 = (Base‘𝑊) |
lbsacsbs.4 | ⊢ 𝐼 = (mrInd‘𝐴) |
lbsacsbs.5 | ⊢ 𝐽 = (LBasis‘𝑊) |
Ref | Expression |
---|---|
lbsacsbs | ⊢ (𝑊 ∈ LVec → (𝑆 ∈ 𝐽 ↔ (𝑆 ∈ 𝐼 ∧ (𝑁‘𝑆) = 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lbsacsbs.3 | . . 3 ⊢ 𝑋 = (Base‘𝑊) | |
2 | lbsacsbs.5 | . . 3 ⊢ 𝐽 = (LBasis‘𝑊) | |
3 | eqid 2760 | . . 3 ⊢ (LSpan‘𝑊) = (LSpan‘𝑊) | |
4 | 1, 2, 3 | islbs2 19376 | . 2 ⊢ (𝑊 ∈ LVec → (𝑆 ∈ 𝐽 ↔ (𝑆 ⊆ 𝑋 ∧ ((LSpan‘𝑊)‘𝑆) = 𝑋 ∧ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝑆 ∖ {𝑥}))))) |
5 | lveclmod 19328 | . . . . . 6 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
6 | lbsacsbs.1 | . . . . . . 7 ⊢ 𝐴 = (LSubSp‘𝑊) | |
7 | lbsacsbs.2 | . . . . . . 7 ⊢ 𝑁 = (mrCls‘𝐴) | |
8 | 6, 3, 7 | mrclsp 19211 | . . . . . 6 ⊢ (𝑊 ∈ LMod → (LSpan‘𝑊) = 𝑁) |
9 | 5, 8 | syl 17 | . . . . 5 ⊢ (𝑊 ∈ LVec → (LSpan‘𝑊) = 𝑁) |
10 | 9 | fveq1d 6355 | . . . 4 ⊢ (𝑊 ∈ LVec → ((LSpan‘𝑊)‘𝑆) = (𝑁‘𝑆)) |
11 | 10 | eqeq1d 2762 | . . 3 ⊢ (𝑊 ∈ LVec → (((LSpan‘𝑊)‘𝑆) = 𝑋 ↔ (𝑁‘𝑆) = 𝑋)) |
12 | 9 | fveq1d 6355 | . . . . . 6 ⊢ (𝑊 ∈ LVec → ((LSpan‘𝑊)‘(𝑆 ∖ {𝑥})) = (𝑁‘(𝑆 ∖ {𝑥}))) |
13 | 12 | eleq2d 2825 | . . . . 5 ⊢ (𝑊 ∈ LVec → (𝑥 ∈ ((LSpan‘𝑊)‘(𝑆 ∖ {𝑥})) ↔ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))) |
14 | 13 | notbid 307 | . . . 4 ⊢ (𝑊 ∈ LVec → (¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝑆 ∖ {𝑥})) ↔ ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))) |
15 | 14 | ralbidv 3124 | . . 3 ⊢ (𝑊 ∈ LVec → (∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝑆 ∖ {𝑥})) ↔ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))) |
16 | 11, 15 | 3anbi23d 1551 | . 2 ⊢ (𝑊 ∈ LVec → ((𝑆 ⊆ 𝑋 ∧ ((LSpan‘𝑊)‘𝑆) = 𝑋 ∧ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝑆 ∖ {𝑥}))) ↔ (𝑆 ⊆ 𝑋 ∧ (𝑁‘𝑆) = 𝑋 ∧ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))))) |
17 | 1, 6 | lssmre 19188 | . . . . 5 ⊢ (𝑊 ∈ LMod → 𝐴 ∈ (Moore‘𝑋)) |
18 | lbsacsbs.4 | . . . . . 6 ⊢ 𝐼 = (mrInd‘𝐴) | |
19 | 7, 18 | ismri 16513 | . . . . 5 ⊢ (𝐴 ∈ (Moore‘𝑋) → (𝑆 ∈ 𝐼 ↔ (𝑆 ⊆ 𝑋 ∧ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))))) |
20 | 5, 17, 19 | 3syl 18 | . . . 4 ⊢ (𝑊 ∈ LVec → (𝑆 ∈ 𝐼 ↔ (𝑆 ⊆ 𝑋 ∧ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))))) |
21 | 20 | anbi1d 743 | . . 3 ⊢ (𝑊 ∈ LVec → ((𝑆 ∈ 𝐼 ∧ (𝑁‘𝑆) = 𝑋) ↔ ((𝑆 ⊆ 𝑋 ∧ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))) ∧ (𝑁‘𝑆) = 𝑋))) |
22 | 3anan32 1083 | . . 3 ⊢ ((𝑆 ⊆ 𝑋 ∧ (𝑁‘𝑆) = 𝑋 ∧ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))) ↔ ((𝑆 ⊆ 𝑋 ∧ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))) ∧ (𝑁‘𝑆) = 𝑋)) | |
23 | 21, 22 | syl6rbbr 279 | . 2 ⊢ (𝑊 ∈ LVec → ((𝑆 ⊆ 𝑋 ∧ (𝑁‘𝑆) = 𝑋 ∧ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))) ↔ (𝑆 ∈ 𝐼 ∧ (𝑁‘𝑆) = 𝑋))) |
24 | 4, 16, 23 | 3bitrd 294 | 1 ⊢ (𝑊 ∈ LVec → (𝑆 ∈ 𝐽 ↔ (𝑆 ∈ 𝐼 ∧ (𝑁‘𝑆) = 𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 ∀wral 3050 ∖ cdif 3712 ⊆ wss 3715 {csn 4321 ‘cfv 6049 Basecbs 16079 Moorecmre 16464 mrClscmrc 16465 mrIndcmri 16466 LModclmod 19085 LSubSpclss 19154 LSpanclspn 19193 LBasisclbs 19296 LVecclvec 19324 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-1st 7334 df-2nd 7335 df-tpos 7522 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-er 7913 df-en 8124 df-dom 8125 df-sdom 8126 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-nn 11233 df-2 11291 df-3 11292 df-ndx 16082 df-slot 16083 df-base 16085 df-sets 16086 df-ress 16087 df-plusg 16176 df-mulr 16177 df-0g 16324 df-mre 16468 df-mrc 16469 df-mri 16470 df-mgm 17463 df-sgrp 17505 df-mnd 17516 df-grp 17646 df-minusg 17647 df-sbg 17648 df-mgp 18710 df-ur 18722 df-ring 18769 df-oppr 18843 df-dvdsr 18861 df-unit 18862 df-invr 18892 df-drng 18971 df-lmod 19087 df-lss 19155 df-lsp 19194 df-lbs 19297 df-lvec 19325 |
This theorem is referenced by: lvecdim 19379 |
Copyright terms: Public domain | W3C validator |