MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lbsacsbs Structured version   Visualization version   GIF version

Theorem lbsacsbs 19378
Description: Being a basis in a vector space is equivalent to being a basis in the associated algebraic closure system. Equivalent to islbs2 19376. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
lbsacsbs.1 𝐴 = (LSubSp‘𝑊)
lbsacsbs.2 𝑁 = (mrCls‘𝐴)
lbsacsbs.3 𝑋 = (Base‘𝑊)
lbsacsbs.4 𝐼 = (mrInd‘𝐴)
lbsacsbs.5 𝐽 = (LBasis‘𝑊)
Assertion
Ref Expression
lbsacsbs (𝑊 ∈ LVec → (𝑆𝐽 ↔ (𝑆𝐼 ∧ (𝑁𝑆) = 𝑋)))

Proof of Theorem lbsacsbs
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 lbsacsbs.3 . . 3 𝑋 = (Base‘𝑊)
2 lbsacsbs.5 . . 3 𝐽 = (LBasis‘𝑊)
3 eqid 2760 . . 3 (LSpan‘𝑊) = (LSpan‘𝑊)
41, 2, 3islbs2 19376 . 2 (𝑊 ∈ LVec → (𝑆𝐽 ↔ (𝑆𝑋 ∧ ((LSpan‘𝑊)‘𝑆) = 𝑋 ∧ ∀𝑥𝑆 ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝑆 ∖ {𝑥})))))
5 lveclmod 19328 . . . . . 6 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
6 lbsacsbs.1 . . . . . . 7 𝐴 = (LSubSp‘𝑊)
7 lbsacsbs.2 . . . . . . 7 𝑁 = (mrCls‘𝐴)
86, 3, 7mrclsp 19211 . . . . . 6 (𝑊 ∈ LMod → (LSpan‘𝑊) = 𝑁)
95, 8syl 17 . . . . 5 (𝑊 ∈ LVec → (LSpan‘𝑊) = 𝑁)
109fveq1d 6355 . . . 4 (𝑊 ∈ LVec → ((LSpan‘𝑊)‘𝑆) = (𝑁𝑆))
1110eqeq1d 2762 . . 3 (𝑊 ∈ LVec → (((LSpan‘𝑊)‘𝑆) = 𝑋 ↔ (𝑁𝑆) = 𝑋))
129fveq1d 6355 . . . . . 6 (𝑊 ∈ LVec → ((LSpan‘𝑊)‘(𝑆 ∖ {𝑥})) = (𝑁‘(𝑆 ∖ {𝑥})))
1312eleq2d 2825 . . . . 5 (𝑊 ∈ LVec → (𝑥 ∈ ((LSpan‘𝑊)‘(𝑆 ∖ {𝑥})) ↔ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))))
1413notbid 307 . . . 4 (𝑊 ∈ LVec → (¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝑆 ∖ {𝑥})) ↔ ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))))
1514ralbidv 3124 . . 3 (𝑊 ∈ LVec → (∀𝑥𝑆 ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝑆 ∖ {𝑥})) ↔ ∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))))
1611, 153anbi23d 1551 . 2 (𝑊 ∈ LVec → ((𝑆𝑋 ∧ ((LSpan‘𝑊)‘𝑆) = 𝑋 ∧ ∀𝑥𝑆 ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝑆 ∖ {𝑥}))) ↔ (𝑆𝑋 ∧ (𝑁𝑆) = 𝑋 ∧ ∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))))
171, 6lssmre 19188 . . . . 5 (𝑊 ∈ LMod → 𝐴 ∈ (Moore‘𝑋))
18 lbsacsbs.4 . . . . . 6 𝐼 = (mrInd‘𝐴)
197, 18ismri 16513 . . . . 5 (𝐴 ∈ (Moore‘𝑋) → (𝑆𝐼 ↔ (𝑆𝑋 ∧ ∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))))
205, 17, 193syl 18 . . . 4 (𝑊 ∈ LVec → (𝑆𝐼 ↔ (𝑆𝑋 ∧ ∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))))
2120anbi1d 743 . . 3 (𝑊 ∈ LVec → ((𝑆𝐼 ∧ (𝑁𝑆) = 𝑋) ↔ ((𝑆𝑋 ∧ ∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))) ∧ (𝑁𝑆) = 𝑋)))
22 3anan32 1083 . . 3 ((𝑆𝑋 ∧ (𝑁𝑆) = 𝑋 ∧ ∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))) ↔ ((𝑆𝑋 ∧ ∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))) ∧ (𝑁𝑆) = 𝑋))
2321, 22syl6rbbr 279 . 2 (𝑊 ∈ LVec → ((𝑆𝑋 ∧ (𝑁𝑆) = 𝑋 ∧ ∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))) ↔ (𝑆𝐼 ∧ (𝑁𝑆) = 𝑋)))
244, 16, 233bitrd 294 1 (𝑊 ∈ LVec → (𝑆𝐽 ↔ (𝑆𝐼 ∧ (𝑁𝑆) = 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  wral 3050  cdif 3712  wss 3715  {csn 4321  cfv 6049  Basecbs 16079  Moorecmre 16464  mrClscmrc 16465  mrIndcmri 16466  LModclmod 19085  LSubSpclss 19154  LSpanclspn 19193  LBasisclbs 19296  LVecclvec 19324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-tpos 7522  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-2 11291  df-3 11292  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-ress 16087  df-plusg 16176  df-mulr 16177  df-0g 16324  df-mre 16468  df-mrc 16469  df-mri 16470  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-grp 17646  df-minusg 17647  df-sbg 17648  df-mgp 18710  df-ur 18722  df-ring 18769  df-oppr 18843  df-dvdsr 18861  df-unit 18862  df-invr 18892  df-drng 18971  df-lmod 19087  df-lss 19155  df-lsp 19194  df-lbs 19297  df-lvec 19325
This theorem is referenced by:  lvecdim  19379
  Copyright terms: Public domain W3C validator