![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lbicc2 | Structured version Visualization version GIF version |
Description: The lower bound of a closed interval is a member of it. (Contributed by Paul Chapman, 26-Nov-2007.) (Revised by FL, 29-May-2014.) (Revised by Mario Carneiro, 9-Sep-2015.) |
Ref | Expression |
---|---|
lbicc2 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐴 ∈ (𝐴[,]𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1129 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐴 ∈ ℝ*) | |
2 | xrleid 12187 | . . 3 ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ 𝐴) | |
3 | 2 | 3ad2ant1 1126 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐴 ≤ 𝐴) |
4 | simp3 1131 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐴 ≤ 𝐵) | |
5 | elicc1 12423 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ∈ (𝐴[,]𝐵) ↔ (𝐴 ∈ ℝ* ∧ 𝐴 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵))) | |
6 | 5 | 3adant3 1125 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → (𝐴 ∈ (𝐴[,]𝐵) ↔ (𝐴 ∈ ℝ* ∧ 𝐴 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵))) |
7 | 1, 3, 4, 6 | mpbir3and 1426 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐴 ∈ (𝐴[,]𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ w3a 1070 ∈ wcel 2144 class class class wbr 4784 (class class class)co 6792 ℝ*cxr 10274 ≤ cle 10276 [,]cicc 12382 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-cnex 10193 ax-resscn 10194 ax-pre-lttri 10211 ax-pre-lttrn 10212 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-br 4785 df-opab 4845 df-mpt 4862 df-id 5157 df-po 5170 df-so 5171 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-er 7895 df-en 8109 df-dom 8110 df-sdom 8111 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-icc 12386 |
This theorem is referenced by: icccmplem1 22844 reconnlem2 22849 oprpiece1res1 22969 pcoass 23042 ivthlem1 23438 ivth2 23442 ivthle 23443 ivthle2 23444 evthicc 23446 ovolicc2lem5 23508 dyadmaxlem 23584 rolle 23972 cmvth 23973 mvth 23974 dvlip 23975 c1liplem1 23978 dveq0 23982 dvgt0lem1 23984 lhop1lem 23995 dvcnvrelem1 23999 dvcvx 24002 dvfsumle 24003 dvfsumge 24004 dvfsumabs 24005 dvfsumlem2 24009 ftc2 24026 ftc2ditglem 24027 itgparts 24029 itgsubstlem 24030 taylfval 24332 tayl0 24335 efcvx 24422 pige3 24489 logccv 24629 loglesqrt 24719 eliccioo 29973 ftc2re 31010 cvmliftlem6 31604 cvmliftlem8 31606 cvmliftlem9 31607 cvmliftlem10 31608 cvmliftlem13 31610 ivthALT 32661 ftc2nc 33819 areacirc 33830 itgpowd 38319 iccintsng 40262 icccncfext 40612 cncfiooicclem1 40618 dvbdfbdioolem1 40655 itgsin0pilem1 40677 itgcoscmulx 40696 itgsincmulx 40701 fourierdlem20 40855 fourierdlem51 40885 fourierdlem54 40888 fourierdlem64 40898 fourierdlem73 40907 fourierdlem81 40915 fourierdlem102 40936 fourierdlem103 40937 fourierdlem104 40938 fourierdlem114 40948 etransclem46 41008 hoidmv1lelem1 41319 |
Copyright terms: Public domain | W3C validator |