![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lbfzo0 | Structured version Visualization version GIF version |
Description: An integer is strictly greater than zero iff it is a member of ℕ. (Contributed by Mario Carneiro, 29-Sep-2015.) |
Ref | Expression |
---|---|
lbfzo0 | ⊢ (0 ∈ (0..^𝐴) ↔ 𝐴 ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 11600 | . . 3 ⊢ 0 ∈ ℤ | |
2 | 3anass 1081 | . . 3 ⊢ ((0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 < 𝐴) ↔ (0 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 0 < 𝐴))) | |
3 | 1, 2 | mpbiran 991 | . 2 ⊢ ((0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 < 𝐴) ↔ (𝐴 ∈ ℤ ∧ 0 < 𝐴)) |
4 | fzolb 12690 | . 2 ⊢ (0 ∈ (0..^𝐴) ↔ (0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 < 𝐴)) | |
5 | elnnz 11599 | . 2 ⊢ (𝐴 ∈ ℕ ↔ (𝐴 ∈ ℤ ∧ 0 < 𝐴)) | |
6 | 3, 4, 5 | 3bitr4i 292 | 1 ⊢ (0 ∈ (0..^𝐴) ↔ 𝐴 ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 ∧ w3a 1072 ∈ wcel 2139 class class class wbr 4804 (class class class)co 6814 0cc0 10148 < clt 10286 ℕcn 11232 ℤcz 11589 ..^cfzo 12679 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-1st 7334 df-2nd 7335 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-er 7913 df-en 8124 df-dom 8125 df-sdom 8126 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-nn 11233 df-n0 11505 df-z 11590 df-uz 11900 df-fz 12540 df-fzo 12680 |
This theorem is referenced by: elfzo0 12723 fzo0n0 12734 fzo0end 12774 wrdsymb1 13549 ccatfv0 13575 ccat1st1st 13622 ccat2s1p1 13623 lswccats1fst 13631 swrdfv0 13644 swrdn0 13650 swrd0fv0 13660 swrdtrcfv0 13662 cats1un 13695 revs1 13734 repswfsts 13748 cshwidx0mod 13771 cshw1 13788 scshwfzeqfzo 13792 cats1fvn 13823 nnnn0modprm0 15733 cshwrepswhash1 16031 efgsval2 18366 efgs1b 18369 efgsp1 18370 efgsres 18371 efgredlemd 18377 efgredlem 18380 efgrelexlemb 18383 pgpfaclem1 18700 dchrisumlem3 25400 tgcgr4 25646 wlkonl1iedg 26792 usgr2pthlem 26890 pthdlem2lem 26894 lfgrn1cycl 26929 uspgrn2crct 26932 crctcshwlkn0lem6 26939 0enwwlksnge1 26994 wwlksm1edg 27011 wwlksnwwlksnon 27054 wwlksnwwlksnonOLD 27056 clwlkclwwlklem2 27144 clwlkclwwlkf1lem3 27150 clwwlkel 27196 clwwlkf1 27199 umgr2cwwk2dif 27216 clwlksf1clwwlklemOLD 27243 clwwlknonwwlknonb 27275 clwwlknonwwlknonbOLD 27276 upgr3v3e3cycl 27353 upgr4cycl4dv4e 27358 2clwwlk2clwwlk 27528 lmatcl 30212 fib0 30791 signsvtn0 30977 reprpmtf1o 31034 poimirlem3 33743 amgm2d 39021 amgm3d 39022 amgm4d 39023 iccpartigtl 41887 iccpartlt 41888 pfxfv0 41928 pfxtrcfv0 41930 pfx1 41939 pfx2 41940 amgmw2d 43081 |
Copyright terms: Public domain | W3C validator |