MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lawcoslem1 Structured version   Visualization version   GIF version

Theorem lawcoslem1 24766
Description: Lemma for lawcos 24767. Here we prove the law for a point at the origin and two distinct points U and V, using an expanded version of the signed angle expression on the complex plane. (Contributed by David A. Wheeler, 11-Jun-2015.)
Hypotheses
Ref Expression
lawcoslem1.1 (𝜑𝑈 ∈ ℂ)
lawcoslem1.2 (𝜑𝑉 ∈ ℂ)
lawcoslem1.3 (𝜑𝑈 ≠ 0)
lawcoslem1.4 (𝜑𝑉 ≠ 0)
Assertion
Ref Expression
lawcoslem1 (𝜑 → ((abs‘(𝑈𝑉))↑2) = ((((abs‘𝑈)↑2) + ((abs‘𝑉)↑2)) − (2 · (((abs‘𝑈) · (abs‘𝑉)) · ((ℜ‘(𝑈 / 𝑉)) / (abs‘(𝑈 / 𝑉)))))))

Proof of Theorem lawcoslem1
StepHypRef Expression
1 lawcoslem1.1 . . 3 (𝜑𝑈 ∈ ℂ)
2 lawcoslem1.2 . . 3 (𝜑𝑉 ∈ ℂ)
3 sqabssub 14231 . . 3 ((𝑈 ∈ ℂ ∧ 𝑉 ∈ ℂ) → ((abs‘(𝑈𝑉))↑2) = ((((abs‘𝑈)↑2) + ((abs‘𝑉)↑2)) − (2 · (ℜ‘(𝑈 · (∗‘𝑉))))))
41, 2, 3syl2anc 573 . 2 (𝜑 → ((abs‘(𝑈𝑉))↑2) = ((((abs‘𝑈)↑2) + ((abs‘𝑉)↑2)) − (2 · (ℜ‘(𝑈 · (∗‘𝑉))))))
5 lawcoslem1.4 . . . . . . . . 9 (𝜑𝑉 ≠ 0)
61, 2, 5absdivd 14402 . . . . . . . 8 (𝜑 → (abs‘(𝑈 / 𝑉)) = ((abs‘𝑈) / (abs‘𝑉)))
76oveq2d 6809 . . . . . . 7 (𝜑 → ((ℜ‘(𝑈 / 𝑉)) / (abs‘(𝑈 / 𝑉))) = ((ℜ‘(𝑈 / 𝑉)) / ((abs‘𝑈) / (abs‘𝑉))))
87oveq2d 6809 . . . . . 6 (𝜑 → (((abs‘𝑈) · (abs‘𝑉)) · ((ℜ‘(𝑈 / 𝑉)) / (abs‘(𝑈 / 𝑉)))) = (((abs‘𝑈) · (abs‘𝑉)) · ((ℜ‘(𝑈 / 𝑉)) / ((abs‘𝑈) / (abs‘𝑉)))))
91abscld 14383 . . . . . . . . 9 (𝜑 → (abs‘𝑈) ∈ ℝ)
102abscld 14383 . . . . . . . . 9 (𝜑 → (abs‘𝑉) ∈ ℝ)
119, 10remulcld 10272 . . . . . . . 8 (𝜑 → ((abs‘𝑈) · (abs‘𝑉)) ∈ ℝ)
1211recnd 10270 . . . . . . 7 (𝜑 → ((abs‘𝑈) · (abs‘𝑉)) ∈ ℂ)
131, 2, 5divcld 11003 . . . . . . . . 9 (𝜑 → (𝑈 / 𝑉) ∈ ℂ)
1413recld 14142 . . . . . . . 8 (𝜑 → (ℜ‘(𝑈 / 𝑉)) ∈ ℝ)
1514recnd 10270 . . . . . . 7 (𝜑 → (ℜ‘(𝑈 / 𝑉)) ∈ ℂ)
169recnd 10270 . . . . . . . 8 (𝜑 → (abs‘𝑈) ∈ ℂ)
1710recnd 10270 . . . . . . . 8 (𝜑 → (abs‘𝑉) ∈ ℂ)
182, 5absne0d 14394 . . . . . . . 8 (𝜑 → (abs‘𝑉) ≠ 0)
1916, 17, 18divcld 11003 . . . . . . 7 (𝜑 → ((abs‘𝑈) / (abs‘𝑉)) ∈ ℂ)
20 lawcoslem1.3 . . . . . . . . 9 (𝜑𝑈 ≠ 0)
211, 20absne0d 14394 . . . . . . . 8 (𝜑 → (abs‘𝑈) ≠ 0)
2216, 17, 21, 18divne0d 11019 . . . . . . 7 (𝜑 → ((abs‘𝑈) / (abs‘𝑉)) ≠ 0)
2312, 15, 19, 22div12d 11039 . . . . . 6 (𝜑 → (((abs‘𝑈) · (abs‘𝑉)) · ((ℜ‘(𝑈 / 𝑉)) / ((abs‘𝑈) / (abs‘𝑉)))) = ((ℜ‘(𝑈 / 𝑉)) · (((abs‘𝑈) · (abs‘𝑉)) / ((abs‘𝑈) / (abs‘𝑉)))))
248, 23eqtrd 2805 . . . . 5 (𝜑 → (((abs‘𝑈) · (abs‘𝑉)) · ((ℜ‘(𝑈 / 𝑉)) / (abs‘(𝑈 / 𝑉)))) = ((ℜ‘(𝑈 / 𝑉)) · (((abs‘𝑈) · (abs‘𝑉)) / ((abs‘𝑈) / (abs‘𝑉)))))
2512, 16, 17, 21, 18divdiv2d 11035 . . . . . . 7 (𝜑 → (((abs‘𝑈) · (abs‘𝑉)) / ((abs‘𝑈) / (abs‘𝑉))) = ((((abs‘𝑈) · (abs‘𝑉)) · (abs‘𝑉)) / (abs‘𝑈)))
2617sqvald 13212 . . . . . . . . . 10 (𝜑 → ((abs‘𝑉)↑2) = ((abs‘𝑉) · (abs‘𝑉)))
2726oveq1d 6808 . . . . . . . . 9 (𝜑 → (((abs‘𝑉)↑2) · (abs‘𝑈)) = (((abs‘𝑉) · (abs‘𝑉)) · (abs‘𝑈)))
2816, 17, 17mul31d 10449 . . . . . . . . 9 (𝜑 → (((abs‘𝑈) · (abs‘𝑉)) · (abs‘𝑉)) = (((abs‘𝑉) · (abs‘𝑉)) · (abs‘𝑈)))
2927, 28eqtr4d 2808 . . . . . . . 8 (𝜑 → (((abs‘𝑉)↑2) · (abs‘𝑈)) = (((abs‘𝑈) · (abs‘𝑉)) · (abs‘𝑉)))
3029oveq1d 6808 . . . . . . 7 (𝜑 → ((((abs‘𝑉)↑2) · (abs‘𝑈)) / (abs‘𝑈)) = ((((abs‘𝑈) · (abs‘𝑉)) · (abs‘𝑉)) / (abs‘𝑈)))
3117sqcld 13213 . . . . . . . 8 (𝜑 → ((abs‘𝑉)↑2) ∈ ℂ)
3231, 16, 21divcan4d 11009 . . . . . . 7 (𝜑 → ((((abs‘𝑉)↑2) · (abs‘𝑈)) / (abs‘𝑈)) = ((abs‘𝑉)↑2))
3325, 30, 323eqtr2rd 2812 . . . . . 6 (𝜑 → ((abs‘𝑉)↑2) = (((abs‘𝑈) · (abs‘𝑉)) / ((abs‘𝑈) / (abs‘𝑉))))
3433oveq2d 6809 . . . . 5 (𝜑 → ((ℜ‘(𝑈 / 𝑉)) · ((abs‘𝑉)↑2)) = ((ℜ‘(𝑈 / 𝑉)) · (((abs‘𝑈) · (abs‘𝑉)) / ((abs‘𝑈) / (abs‘𝑉)))))
3515, 31mulcomd 10263 . . . . . . 7 (𝜑 → ((ℜ‘(𝑈 / 𝑉)) · ((abs‘𝑉)↑2)) = (((abs‘𝑉)↑2) · (ℜ‘(𝑈 / 𝑉))))
3610resqcld 13242 . . . . . . . 8 (𝜑 → ((abs‘𝑉)↑2) ∈ ℝ)
3736, 13remul2d 14175 . . . . . . 7 (𝜑 → (ℜ‘(((abs‘𝑉)↑2) · (𝑈 / 𝑉))) = (((abs‘𝑉)↑2) · (ℜ‘(𝑈 / 𝑉))))
3835, 37eqtr4d 2808 . . . . . 6 (𝜑 → ((ℜ‘(𝑈 / 𝑉)) · ((abs‘𝑉)↑2)) = (ℜ‘(((abs‘𝑉)↑2) · (𝑈 / 𝑉))))
391, 31, 2, 5div12d 11039 . . . . . . . 8 (𝜑 → (𝑈 · (((abs‘𝑉)↑2) / 𝑉)) = (((abs‘𝑉)↑2) · (𝑈 / 𝑉)))
4031, 2, 5divrecd 11006 . . . . . . . . . 10 (𝜑 → (((abs‘𝑉)↑2) / 𝑉) = (((abs‘𝑉)↑2) · (1 / 𝑉)))
41 recval 14270 . . . . . . . . . . . . 13 ((𝑉 ∈ ℂ ∧ 𝑉 ≠ 0) → (1 / 𝑉) = ((∗‘𝑉) / ((abs‘𝑉)↑2)))
422, 5, 41syl2anc 573 . . . . . . . . . . . 12 (𝜑 → (1 / 𝑉) = ((∗‘𝑉) / ((abs‘𝑉)↑2)))
4342oveq2d 6809 . . . . . . . . . . 11 (𝜑 → (((abs‘𝑉)↑2) · (1 / 𝑉)) = (((abs‘𝑉)↑2) · ((∗‘𝑉) / ((abs‘𝑉)↑2))))
442cjcld 14144 . . . . . . . . . . . 12 (𝜑 → (∗‘𝑉) ∈ ℂ)
45 sqne0 13137 . . . . . . . . . . . . . 14 ((abs‘𝑉) ∈ ℂ → (((abs‘𝑉)↑2) ≠ 0 ↔ (abs‘𝑉) ≠ 0))
4617, 45syl 17 . . . . . . . . . . . . 13 (𝜑 → (((abs‘𝑉)↑2) ≠ 0 ↔ (abs‘𝑉) ≠ 0))
4718, 46mpbird 247 . . . . . . . . . . . 12 (𝜑 → ((abs‘𝑉)↑2) ≠ 0)
4844, 31, 47divcan2d 11005 . . . . . . . . . . 11 (𝜑 → (((abs‘𝑉)↑2) · ((∗‘𝑉) / ((abs‘𝑉)↑2))) = (∗‘𝑉))
4943, 48eqtrd 2805 . . . . . . . . . 10 (𝜑 → (((abs‘𝑉)↑2) · (1 / 𝑉)) = (∗‘𝑉))
5040, 49eqtrd 2805 . . . . . . . . 9 (𝜑 → (((abs‘𝑉)↑2) / 𝑉) = (∗‘𝑉))
5150oveq2d 6809 . . . . . . . 8 (𝜑 → (𝑈 · (((abs‘𝑉)↑2) / 𝑉)) = (𝑈 · (∗‘𝑉)))
5239, 51eqtr3d 2807 . . . . . . 7 (𝜑 → (((abs‘𝑉)↑2) · (𝑈 / 𝑉)) = (𝑈 · (∗‘𝑉)))
5352fveq2d 6336 . . . . . 6 (𝜑 → (ℜ‘(((abs‘𝑉)↑2) · (𝑈 / 𝑉))) = (ℜ‘(𝑈 · (∗‘𝑉))))
5438, 53eqtrd 2805 . . . . 5 (𝜑 → ((ℜ‘(𝑈 / 𝑉)) · ((abs‘𝑉)↑2)) = (ℜ‘(𝑈 · (∗‘𝑉))))
5524, 34, 543eqtr2rd 2812 . . . 4 (𝜑 → (ℜ‘(𝑈 · (∗‘𝑉))) = (((abs‘𝑈) · (abs‘𝑉)) · ((ℜ‘(𝑈 / 𝑉)) / (abs‘(𝑈 / 𝑉)))))
5655oveq2d 6809 . . 3 (𝜑 → (2 · (ℜ‘(𝑈 · (∗‘𝑉)))) = (2 · (((abs‘𝑈) · (abs‘𝑉)) · ((ℜ‘(𝑈 / 𝑉)) / (abs‘(𝑈 / 𝑉))))))
5756oveq2d 6809 . 2 (𝜑 → ((((abs‘𝑈)↑2) + ((abs‘𝑉)↑2)) − (2 · (ℜ‘(𝑈 · (∗‘𝑉))))) = ((((abs‘𝑈)↑2) + ((abs‘𝑉)↑2)) − (2 · (((abs‘𝑈) · (abs‘𝑉)) · ((ℜ‘(𝑈 / 𝑉)) / (abs‘(𝑈 / 𝑉)))))))
584, 57eqtrd 2805 1 (𝜑 → ((abs‘(𝑈𝑉))↑2) = ((((abs‘𝑈)↑2) + ((abs‘𝑉)↑2)) − (2 · (((abs‘𝑈) · (abs‘𝑉)) · ((ℜ‘(𝑈 / 𝑉)) / (abs‘(𝑈 / 𝑉)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1631  wcel 2145  wne 2943  cfv 6031  (class class class)co 6793  cc 10136  0cc0 10138  1c1 10139   + caddc 10141   · cmul 10143  cmin 10468   / cdiv 10886  2c2 11272  cexp 13067  ccj 14044  cre 14045  abscabs 14182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-sup 8504  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-n0 11495  df-z 11580  df-uz 11889  df-rp 12036  df-seq 13009  df-exp 13068  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184
This theorem is referenced by:  lawcos  24767
  Copyright terms: Public domain W3C validator