Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lawcos Structured version   Visualization version   GIF version

Theorem lawcos 24591
 Description: Law of cosines (also known as the Al-Kashi theorem or the generalized Pythagorean theorem, or the cosine formula or cosine rule). Given three distinct points A, B, and C, prove a relationship between their segment lengths. This theorem is expressed using the complex number plane as a plane, where 𝐹 is the signed angle construct (as used in ang180 24589), 𝑋 is the distance of line segment BC, 𝑌 is the distance of line segment AC, 𝑍 is the distance of line segment AB, and 𝑂 is the signed angle m/_ BCA on the complex plane. We translate triangle ABC to move C to the origin (C-C), B to U=(B-C), and A to V=(A-C), then use lemma lawcoslem1 24590 to prove this algebraically simpler case. The metamath convention is to use a signed angle; in this case the sign doesn't matter because we use the cosine of the angle (see cosneg 14921). The Pythagorean theorem pythag 24592 is a special case of the law of cosines. The theorem's expression and approach were suggested by Mario Carneiro. This is Metamath 100 proof #94. (Contributed by David A. Wheeler, 12-Jun-2015.)
Hypotheses
Ref Expression
lawcos.1 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
lawcos.2 𝑋 = (abs‘(𝐵𝐶))
lawcos.3 𝑌 = (abs‘(𝐴𝐶))
lawcos.4 𝑍 = (abs‘(𝐴𝐵))
lawcos.5 𝑂 = ((𝐵𝐶)𝐹(𝐴𝐶))
Assertion
Ref Expression
lawcos (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (𝑍↑2) = (((𝑋↑2) + (𝑌↑2)) − (2 · ((𝑋 · 𝑌) · (cos‘𝑂)))))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)   𝑂(𝑥,𝑦)   𝑋(𝑥,𝑦)   𝑌(𝑥,𝑦)   𝑍(𝑥,𝑦)

Proof of Theorem lawcos
StepHypRef Expression
1 subcl 10318 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝐶) ∈ ℂ)
213adant2 1100 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝐶) ∈ ℂ)
32adantr 480 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (𝐴𝐶) ∈ ℂ)
4 subcl 10318 . . . . 5 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵𝐶) ∈ ℂ)
543adant1 1099 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵𝐶) ∈ ℂ)
65adantr 480 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (𝐵𝐶) ∈ ℂ)
7 subeq0 10345 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴𝐶) = 0 ↔ 𝐴 = 𝐶))
87necon3bid 2867 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴𝐶) ≠ 0 ↔ 𝐴𝐶))
98bicomd 213 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝐶 ↔ (𝐴𝐶) ≠ 0))
1093adant2 1100 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝐶 ↔ (𝐴𝐶) ≠ 0))
1110biimpa 500 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝐴𝐶) → (𝐴𝐶) ≠ 0)
1211adantrr 753 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (𝐴𝐶) ≠ 0)
13 subeq0 10345 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐵𝐶) = 0 ↔ 𝐵 = 𝐶))
1413necon3bid 2867 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐵𝐶) ≠ 0 ↔ 𝐵𝐶))
1514bicomd 213 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵𝐶 ↔ (𝐵𝐶) ≠ 0))
16153adant1 1099 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵𝐶 ↔ (𝐵𝐶) ≠ 0))
1716biimpa 500 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝐵𝐶) → (𝐵𝐶) ≠ 0)
1817adantrl 752 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (𝐵𝐶) ≠ 0)
193, 6, 12, 18lawcoslem1 24590 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → ((abs‘((𝐴𝐶) − (𝐵𝐶)))↑2) = ((((abs‘(𝐴𝐶))↑2) + ((abs‘(𝐵𝐶))↑2)) − (2 · (((abs‘(𝐴𝐶)) · (abs‘(𝐵𝐶))) · ((ℜ‘((𝐴𝐶) / (𝐵𝐶))) / (abs‘((𝐴𝐶) / (𝐵𝐶))))))))
20 nnncan2 10356 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴𝐶) − (𝐵𝐶)) = (𝐴𝐵))
2120fveq2d 6233 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (abs‘((𝐴𝐶) − (𝐵𝐶))) = (abs‘(𝐴𝐵)))
22 lawcos.4 . . . . 5 𝑍 = (abs‘(𝐴𝐵))
2321, 22syl6reqr 2704 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝑍 = (abs‘((𝐴𝐶) − (𝐵𝐶))))
2423oveq1d 6705 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝑍↑2) = ((abs‘((𝐴𝐶) − (𝐵𝐶)))↑2))
2524adantr 480 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (𝑍↑2) = ((abs‘((𝐴𝐶) − (𝐵𝐶)))↑2))
263abscld 14219 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (abs‘(𝐴𝐶)) ∈ ℝ)
2726recnd 10106 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (abs‘(𝐴𝐶)) ∈ ℂ)
2827sqcld 13046 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → ((abs‘(𝐴𝐶))↑2) ∈ ℂ)
296abscld 14219 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (abs‘(𝐵𝐶)) ∈ ℝ)
3029recnd 10106 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (abs‘(𝐵𝐶)) ∈ ℂ)
3130sqcld 13046 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → ((abs‘(𝐵𝐶))↑2) ∈ ℂ)
3228, 31addcomd 10276 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (((abs‘(𝐴𝐶))↑2) + ((abs‘(𝐵𝐶))↑2)) = (((abs‘(𝐵𝐶))↑2) + ((abs‘(𝐴𝐶))↑2)))
33 lawcos.2 . . . . . 6 𝑋 = (abs‘(𝐵𝐶))
3433oveq1i 6700 . . . . 5 (𝑋↑2) = ((abs‘(𝐵𝐶))↑2)
35 lawcos.3 . . . . . 6 𝑌 = (abs‘(𝐴𝐶))
3635oveq1i 6700 . . . . 5 (𝑌↑2) = ((abs‘(𝐴𝐶))↑2)
3734, 36oveq12i 6702 . . . 4 ((𝑋↑2) + (𝑌↑2)) = (((abs‘(𝐵𝐶))↑2) + ((abs‘(𝐴𝐶))↑2))
3832, 37syl6reqr 2704 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → ((𝑋↑2) + (𝑌↑2)) = (((abs‘(𝐴𝐶))↑2) + ((abs‘(𝐵𝐶))↑2)))
3927, 30mulcomd 10099 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → ((abs‘(𝐴𝐶)) · (abs‘(𝐵𝐶))) = ((abs‘(𝐵𝐶)) · (abs‘(𝐴𝐶))))
4033, 35oveq12i 6702 . . . . . 6 (𝑋 · 𝑌) = ((abs‘(𝐵𝐶)) · (abs‘(𝐴𝐶)))
4139, 40syl6reqr 2704 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (𝑋 · 𝑌) = ((abs‘(𝐴𝐶)) · (abs‘(𝐵𝐶))))
42 lawcos.5 . . . . . . . . 9 𝑂 = ((𝐵𝐶)𝐹(𝐴𝐶))
4342fveq2i 6232 . . . . . . . 8 (cos‘𝑂) = (cos‘((𝐵𝐶)𝐹(𝐴𝐶)))
44 lawcos.1 . . . . . . . . . 10 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
4544, 6, 18, 3, 12angvald 24579 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → ((𝐵𝐶)𝐹(𝐴𝐶)) = (ℑ‘(log‘((𝐴𝐶) / (𝐵𝐶)))))
4645fveq2d 6233 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (cos‘((𝐵𝐶)𝐹(𝐴𝐶))) = (cos‘(ℑ‘(log‘((𝐴𝐶) / (𝐵𝐶))))))
4743, 46syl5eq 2697 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (cos‘𝑂) = (cos‘(ℑ‘(log‘((𝐴𝐶) / (𝐵𝐶))))))
483, 6, 18divcld 10839 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → ((𝐴𝐶) / (𝐵𝐶)) ∈ ℂ)
493, 6, 12, 18divne0d 10855 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → ((𝐴𝐶) / (𝐵𝐶)) ≠ 0)
5048, 49logcld 24362 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (log‘((𝐴𝐶) / (𝐵𝐶))) ∈ ℂ)
5150imcld 13979 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (ℑ‘(log‘((𝐴𝐶) / (𝐵𝐶)))) ∈ ℝ)
52 recosval 14910 . . . . . . . 8 ((ℑ‘(log‘((𝐴𝐶) / (𝐵𝐶)))) ∈ ℝ → (cos‘(ℑ‘(log‘((𝐴𝐶) / (𝐵𝐶))))) = (ℜ‘(exp‘(i · (ℑ‘(log‘((𝐴𝐶) / (𝐵𝐶))))))))
5351, 52syl 17 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (cos‘(ℑ‘(log‘((𝐴𝐶) / (𝐵𝐶))))) = (ℜ‘(exp‘(i · (ℑ‘(log‘((𝐴𝐶) / (𝐵𝐶))))))))
5447, 53eqtrd 2685 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (cos‘𝑂) = (ℜ‘(exp‘(i · (ℑ‘(log‘((𝐴𝐶) / (𝐵𝐶))))))))
55 efiarg 24398 . . . . . . . 8 ((((𝐴𝐶) / (𝐵𝐶)) ∈ ℂ ∧ ((𝐴𝐶) / (𝐵𝐶)) ≠ 0) → (exp‘(i · (ℑ‘(log‘((𝐴𝐶) / (𝐵𝐶)))))) = (((𝐴𝐶) / (𝐵𝐶)) / (abs‘((𝐴𝐶) / (𝐵𝐶)))))
5648, 49, 55syl2anc 694 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (exp‘(i · (ℑ‘(log‘((𝐴𝐶) / (𝐵𝐶)))))) = (((𝐴𝐶) / (𝐵𝐶)) / (abs‘((𝐴𝐶) / (𝐵𝐶)))))
5756fveq2d 6233 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (ℜ‘(exp‘(i · (ℑ‘(log‘((𝐴𝐶) / (𝐵𝐶))))))) = (ℜ‘(((𝐴𝐶) / (𝐵𝐶)) / (abs‘((𝐴𝐶) / (𝐵𝐶))))))
5848abscld 14219 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (abs‘((𝐴𝐶) / (𝐵𝐶))) ∈ ℝ)
5948, 49absne0d 14230 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (abs‘((𝐴𝐶) / (𝐵𝐶))) ≠ 0)
6058, 48, 59redivd 14013 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (ℜ‘(((𝐴𝐶) / (𝐵𝐶)) / (abs‘((𝐴𝐶) / (𝐵𝐶))))) = ((ℜ‘((𝐴𝐶) / (𝐵𝐶))) / (abs‘((𝐴𝐶) / (𝐵𝐶)))))
6154, 57, 603eqtrd 2689 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (cos‘𝑂) = ((ℜ‘((𝐴𝐶) / (𝐵𝐶))) / (abs‘((𝐴𝐶) / (𝐵𝐶)))))
6241, 61oveq12d 6708 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → ((𝑋 · 𝑌) · (cos‘𝑂)) = (((abs‘(𝐴𝐶)) · (abs‘(𝐵𝐶))) · ((ℜ‘((𝐴𝐶) / (𝐵𝐶))) / (abs‘((𝐴𝐶) / (𝐵𝐶))))))
6362oveq2d 6706 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (2 · ((𝑋 · 𝑌) · (cos‘𝑂))) = (2 · (((abs‘(𝐴𝐶)) · (abs‘(𝐵𝐶))) · ((ℜ‘((𝐴𝐶) / (𝐵𝐶))) / (abs‘((𝐴𝐶) / (𝐵𝐶)))))))
6438, 63oveq12d 6708 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (((𝑋↑2) + (𝑌↑2)) − (2 · ((𝑋 · 𝑌) · (cos‘𝑂)))) = ((((abs‘(𝐴𝐶))↑2) + ((abs‘(𝐵𝐶))↑2)) − (2 · (((abs‘(𝐴𝐶)) · (abs‘(𝐵𝐶))) · ((ℜ‘((𝐴𝐶) / (𝐵𝐶))) / (abs‘((𝐴𝐶) / (𝐵𝐶))))))))
6519, 25, 643eqtr4d 2695 1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (𝑍↑2) = (((𝑋↑2) + (𝑌↑2)) − (2 · ((𝑋 · 𝑌) · (cos‘𝑂)))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030   ≠ wne 2823   ∖ cdif 3604  {csn 4210  ‘cfv 5926  (class class class)co 6690   ↦ cmpt2 6692  ℂcc 9972  ℝcr 9973  0cc0 9974  ici 9976   + caddc 9977   · cmul 9979   − cmin 10304   / cdiv 10722  2c2 11108  ↑cexp 12900  ℜcre 13881  ℑcim 13882  abscabs 14018  expce 14836  cosccos 14839  logclog 24346 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ioc 12218  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-fac 13101  df-bc 13130  df-hash 13158  df-shft 13851  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-limsup 14246  df-clim 14263  df-rlim 14264  df-sum 14461  df-ef 14842  df-sin 14844  df-cos 14845  df-pi 14847  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-pt 16152  df-prds 16155  df-xrs 16209  df-qtop 16214  df-imas 16215  df-xps 16217  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-mulg 17588  df-cntz 17796  df-cmn 18241  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-fbas 19791  df-fg 19792  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cld 20871  df-ntr 20872  df-cls 20873  df-nei 20950  df-lp 20988  df-perf 20989  df-cn 21079  df-cnp 21080  df-haus 21167  df-tx 21413  df-hmeo 21606  df-fil 21697  df-fm 21789  df-flim 21790  df-flf 21791  df-xms 22172  df-ms 22173  df-tms 22174  df-cncf 22728  df-limc 23675  df-dv 23676  df-log 24348 This theorem is referenced by:  pythag  24592  ssscongptld  24597  heron  24610
 Copyright terms: Public domain W3C validator