![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lattrd | Structured version Visualization version GIF version |
Description: A lattice ordering is transitive. Deduction version of lattr 17264. (Contributed by NM, 3-Sep-2012.) |
Ref | Expression |
---|---|
lattrd.b | ⊢ 𝐵 = (Base‘𝐾) |
lattrd.l | ⊢ ≤ = (le‘𝐾) |
lattrd.1 | ⊢ (𝜑 → 𝐾 ∈ Lat) |
lattrd.2 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
lattrd.3 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
lattrd.4 | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
lattrd.5 | ⊢ (𝜑 → 𝑋 ≤ 𝑌) |
lattrd.6 | ⊢ (𝜑 → 𝑌 ≤ 𝑍) |
Ref | Expression |
---|---|
lattrd | ⊢ (𝜑 → 𝑋 ≤ 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lattrd.5 | . 2 ⊢ (𝜑 → 𝑋 ≤ 𝑌) | |
2 | lattrd.6 | . 2 ⊢ (𝜑 → 𝑌 ≤ 𝑍) | |
3 | lattrd.1 | . . 3 ⊢ (𝜑 → 𝐾 ∈ Lat) | |
4 | lattrd.2 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
5 | lattrd.3 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
6 | lattrd.4 | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
7 | lattrd.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
8 | lattrd.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
9 | 7, 8 | lattr 17264 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍)) |
10 | 3, 4, 5, 6, 9 | syl13anc 1478 | . 2 ⊢ (𝜑 → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍)) |
11 | 1, 2, 10 | mp2and 679 | 1 ⊢ (𝜑 → 𝑋 ≤ 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 class class class wbr 4786 ‘cfv 6031 Basecbs 16064 lecple 16156 Latclat 17253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-nul 4923 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-br 4787 df-opab 4847 df-xp 5255 df-dm 5259 df-iota 5994 df-fv 6039 df-poset 17154 df-lat 17254 |
This theorem is referenced by: latmlej11 17298 latjass 17303 lubun 17331 cvlcvr1 35148 exatleN 35212 2atjm 35253 2llnmat 35332 llnmlplnN 35347 2llnjaN 35374 2lplnja 35427 dalem5 35475 lncmp 35591 2lnat 35592 2llnma1b 35594 cdlema1N 35599 paddasslem5 35632 paddasslem12 35639 paddasslem13 35640 dalawlem3 35681 dalawlem5 35683 dalawlem6 35684 dalawlem7 35685 dalawlem8 35686 dalawlem11 35689 dalawlem12 35690 pl42lem1N 35787 lhpexle2lem 35817 lhpexle3lem 35819 4atexlemtlw 35875 4atexlemc 35877 cdleme15 36087 cdleme17b 36096 cdleme22e 36153 cdleme22eALTN 36154 cdleme23a 36158 cdleme28a 36179 cdleme30a 36187 cdleme32e 36254 cdleme35b 36259 trlord 36378 cdlemg10 36450 cdlemg11b 36451 cdlemg17a 36470 cdlemg35 36522 tendococl 36581 tendopltp 36589 cdlemi1 36627 cdlemk11 36658 cdlemk5u 36670 cdlemk11u 36680 cdlemk52 36763 dialss 36856 diaglbN 36865 diaintclN 36868 dia2dimlem1 36874 cdlemm10N 36928 djajN 36947 dibglbN 36976 dibintclN 36977 diblss 36980 cdlemn10 37016 dihord1 37028 dihord2pre2 37036 dihopelvalcpre 37058 dihord5apre 37072 dihmeetlem1N 37100 dihglblem2N 37104 dihmeetlem2N 37109 dihglbcpreN 37110 dihmeetlem3N 37115 |
Copyright terms: Public domain | W3C validator |