![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lattr | Structured version Visualization version GIF version |
Description: A lattice ordering is transitive. (sstr 3752 analog.) (Contributed by NM, 17-Nov-2011.) |
Ref | Expression |
---|---|
latref.b | ⊢ 𝐵 = (Base‘𝐾) |
latref.l | ⊢ ≤ = (le‘𝐾) |
Ref | Expression |
---|---|
lattr | ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latpos 17251 | . 2 ⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) | |
2 | latref.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
3 | latref.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
4 | 2, 3 | postr 17154 | . 2 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍)) |
5 | 1, 4 | sylan 489 | 1 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 class class class wbr 4804 ‘cfv 6049 Basecbs 16059 lecple 16150 Posetcpo 17141 Latclat 17246 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-nul 4941 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-xp 5272 df-dm 5276 df-iota 6012 df-fv 6057 df-poset 17147 df-lat 17247 |
This theorem is referenced by: lattrd 17259 latjlej1 17266 latjlej12 17268 latnlej2 17272 latmlem1 17282 latmlem12 17284 clatleglb 17327 lecmtN 35046 hlrelat2 35192 ps-2 35267 dalem3 35453 dalem17 35469 dalem21 35483 dalem25 35487 linepsubN 35541 pmapsub 35557 cdlemblem 35582 pmapjoin 35641 lhpmcvr4N 35815 4atexlemnclw 35859 cdlemd3 35990 cdleme3g 36024 cdleme3h 36025 cdleme7d 36036 cdleme21c 36117 cdleme32b 36232 cdleme35fnpq 36239 cdleme35f 36244 cdleme48bw 36292 cdlemf1 36351 cdlemg2fv2 36390 cdlemg7fvbwN 36397 cdlemg4 36407 cdlemg6c 36410 cdlemg27a 36482 cdlemg33b0 36491 cdlemg33a 36496 cdlemk3 36623 dia2dimlem1 36855 dihord6b 37051 dihord5apre 37053 dihglbcpreN 37091 |
Copyright terms: Public domain | W3C validator |