MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latnlej2 Structured version   Visualization version   GIF version

Theorem latnlej2 17285
Description: An idiom to express that a lattice element differs from two others. (Contributed by NM, 10-Jul-2012.)
Hypotheses
Ref Expression
latlej.b 𝐵 = (Base‘𝐾)
latlej.l = (le‘𝐾)
latlej.j = (join‘𝐾)
Assertion
Ref Expression
latnlej2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ ¬ 𝑋 (𝑌 𝑍)) → (¬ 𝑋 𝑌 ∧ ¬ 𝑋 𝑍))

Proof of Theorem latnlej2
StepHypRef Expression
1 latlej.b . . . . . . 7 𝐵 = (Base‘𝐾)
2 latlej.l . . . . . . 7 = (le‘𝐾)
3 latlej.j . . . . . . 7 = (join‘𝐾)
41, 2, 3latlej1 17274 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑍𝐵) → 𝑌 (𝑌 𝑍))
543adant3r1 1195 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌 (𝑌 𝑍))
6 simpl 475 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐾 ∈ Lat)
7 simpr1 1231 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋𝐵)
8 simpr2 1233 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌𝐵)
91, 3latjcl 17265 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑍𝐵) → (𝑌 𝑍) ∈ 𝐵)
1093adant3r1 1195 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑌 𝑍) ∈ 𝐵)
111, 2lattr 17270 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑌 𝑍) ∈ 𝐵)) → ((𝑋 𝑌𝑌 (𝑌 𝑍)) → 𝑋 (𝑌 𝑍)))
126, 7, 8, 10, 11syl13anc 1476 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌𝑌 (𝑌 𝑍)) → 𝑋 (𝑌 𝑍)))
135, 12mpan2d 709 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑌𝑋 (𝑌 𝑍)))
1413con3d 149 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (¬ 𝑋 (𝑌 𝑍) → ¬ 𝑋 𝑌))
151, 2, 3latlej2 17275 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑍𝐵) → 𝑍 (𝑌 𝑍))
16153adant3r1 1195 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍 (𝑌 𝑍))
17 simpr3 1235 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍𝐵)
181, 2lattr 17270 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑍𝐵 ∧ (𝑌 𝑍) ∈ 𝐵)) → ((𝑋 𝑍𝑍 (𝑌 𝑍)) → 𝑋 (𝑌 𝑍)))
196, 7, 17, 10, 18syl13anc 1476 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑍𝑍 (𝑌 𝑍)) → 𝑋 (𝑌 𝑍)))
2016, 19mpan2d 709 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑍𝑋 (𝑌 𝑍)))
2120con3d 149 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (¬ 𝑋 (𝑌 𝑍) → ¬ 𝑋 𝑍))
2214, 21jcad 557 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (¬ 𝑋 (𝑌 𝑍) → (¬ 𝑋 𝑌 ∧ ¬ 𝑋 𝑍)))
23223impia 1107 1 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ ¬ 𝑋 (𝑌 𝑍)) → (¬ 𝑋 𝑌 ∧ ¬ 𝑋 𝑍))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1069   = wceq 1629  wcel 2143   class class class wbr 4783  cfv 6030  (class class class)co 6791  Basecbs 16070  lecple 16162  joincjn 17158  Latclat 17259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1868  ax-4 1883  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2145  ax-9 2152  ax-10 2172  ax-11 2188  ax-12 2201  ax-13 2406  ax-ext 2749  ax-rep 4901  ax-sep 4911  ax-nul 4919  ax-pow 4970  ax-pr 5033  ax-un 7094
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1071  df-tru 1632  df-ex 1851  df-nf 1856  df-sb 2048  df-eu 2620  df-mo 2621  df-clab 2756  df-cleq 2762  df-clel 2765  df-nfc 2900  df-ne 2942  df-ral 3064  df-rex 3065  df-reu 3066  df-rab 3068  df-v 3350  df-sbc 3585  df-csb 3680  df-dif 3723  df-un 3725  df-in 3727  df-ss 3734  df-nul 4061  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-op 4320  df-uni 4572  df-iun 4653  df-br 4784  df-opab 4844  df-mpt 4861  df-id 5156  df-xp 5254  df-rel 5255  df-cnv 5256  df-co 5257  df-dm 5258  df-rn 5259  df-res 5260  df-ima 5261  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6752  df-ov 6794  df-oprab 6795  df-poset 17160  df-lub 17188  df-glb 17189  df-join 17190  df-meet 17191  df-lat 17260
This theorem is referenced by:  latnlej2l  17286  latnlej2r  17287
  Copyright terms: Public domain W3C validator