![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > latmle2 | Structured version Visualization version GIF version |
Description: A meet is less than or equal to its second argument. (Contributed by NM, 21-Oct-2011.) |
Ref | Expression |
---|---|
latmle.b | ⊢ 𝐵 = (Base‘𝐾) |
latmle.l | ⊢ ≤ = (le‘𝐾) |
latmle.m | ⊢ ∧ = (meet‘𝐾) |
Ref | Expression |
---|---|
latmle2 | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) ≤ 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latmle.b | . 2 ⊢ 𝐵 = (Base‘𝐾) | |
2 | latmle.l | . 2 ⊢ ≤ = (le‘𝐾) | |
3 | latmle.m | . 2 ⊢ ∧ = (meet‘𝐾) | |
4 | simp1 1131 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Lat) | |
5 | simp2 1132 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
6 | simp3 1133 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
7 | eqid 2760 | . . . 4 ⊢ (join‘𝐾) = (join‘𝐾) | |
8 | 1, 7, 3, 4, 5, 6 | latcl2 17249 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (〈𝑋, 𝑌〉 ∈ dom (join‘𝐾) ∧ 〈𝑋, 𝑌〉 ∈ dom ∧ )) |
9 | 8 | simprd 482 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑋, 𝑌〉 ∈ dom ∧ ) |
10 | 1, 2, 3, 4, 5, 6, 9 | lemeet2 17228 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) ≤ 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 〈cop 4327 class class class wbr 4804 dom cdm 5266 ‘cfv 6049 (class class class)co 6813 Basecbs 16059 lecple 16150 joincjn 17145 meetcmee 17146 Latclat 17246 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-glb 17176 df-meet 17178 df-lat 17247 |
This theorem is referenced by: latmlem1 17282 latledi 17290 mod1ile 17306 oldmm1 35007 olm01 35026 cmtcomlemN 35038 cmtbr4N 35045 meetat 35086 cvrexchlem 35208 cvrat4 35232 2llnmj 35349 2lplnmj 35411 dalem25 35487 dalem54 35515 dalem57 35518 cdlema1N 35580 cdlemb 35583 llnexchb2lem 35657 llnexch2N 35659 dalawlem1 35660 dalawlem3 35662 pl42lem1N 35768 lhpelim 35826 lhpat3 35835 4atexlemunv 35855 4atexlemtlw 35856 4atexlemnclw 35859 4atexlemex2 35860 lautm 35883 trlle 35974 cdlemc2 35982 cdlemc5 35985 cdlemd2 35989 cdleme0b 36002 cdleme0c 36003 cdleme0fN 36008 cdleme01N 36011 cdleme0ex1N 36013 cdleme2 36018 cdleme3b 36019 cdleme3c 36020 cdleme3g 36024 cdleme3h 36025 cdleme7aa 36032 cdleme7c 36035 cdleme7d 36036 cdleme7e 36037 cdleme7ga 36038 cdleme11fN 36054 cdleme11k 36058 cdleme15d 36067 cdleme16f 36073 cdlemednpq 36089 cdleme19c 36095 cdleme20aN 36099 cdleme20c 36101 cdleme20j 36108 cdleme21c 36117 cdleme21ct 36119 cdleme22cN 36132 cdleme22f 36136 cdleme23a 36139 cdleme28a 36160 cdleme35d 36242 cdleme35f 36244 cdlemeg46frv 36315 cdlemeg46rgv 36318 cdlemeg46req 36319 cdlemg2fv2 36390 cdlemg2m 36394 cdlemg4 36407 cdlemg10bALTN 36426 cdlemg31b 36488 trlcolem 36516 cdlemk14 36644 dia2dimlem1 36855 docaclN 36915 doca2N 36917 djajN 36928 dihjustlem 37007 dihord1 37009 dihord2a 37010 dihord2b 37011 dihord2cN 37012 dihord11b 37013 dihord11c 37015 dihord2pre 37016 dihlsscpre 37025 dihvalcq2 37038 dihopelvalcpre 37039 dihord6apre 37047 dihord5b 37050 dihord5apre 37053 dihmeetlem1N 37081 dihglblem5apreN 37082 dihglblem3N 37086 dihmeetbclemN 37095 dihmeetlem4preN 37097 dihmeetlem7N 37101 dihmeetlem9N 37106 dihjatcclem4 37212 |
Copyright terms: Public domain | W3C validator |