![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > latmidm | Structured version Visualization version GIF version |
Description: Lattice join is idempotent. (inidm 3966 analog.) (Contributed by NM, 8-Nov-2011.) |
Ref | Expression |
---|---|
latmidm.b | ⊢ 𝐵 = (Base‘𝐾) |
latmidm.m | ⊢ ∧ = (meet‘𝐾) |
Ref | Expression |
---|---|
latmidm | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → (𝑋 ∧ 𝑋) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latmidm.b | . 2 ⊢ 𝐵 = (Base‘𝐾) | |
2 | eqid 2761 | . 2 ⊢ (le‘𝐾) = (le‘𝐾) | |
3 | simpl 474 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ Lat) | |
4 | latmidm.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
5 | 1, 4 | latmcl 17274 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑋 ∧ 𝑋) ∈ 𝐵) |
6 | 5 | 3anidm23 1532 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → (𝑋 ∧ 𝑋) ∈ 𝐵) |
7 | simpr 479 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
8 | 1, 2, 4 | latmle1 17298 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑋 ∧ 𝑋)(le‘𝐾)𝑋) |
9 | 8 | 3anidm23 1532 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → (𝑋 ∧ 𝑋)(le‘𝐾)𝑋) |
10 | 1, 2 | latref 17275 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → 𝑋(le‘𝐾)𝑋) |
11 | 1, 2, 4 | latlem12 17300 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → ((𝑋(le‘𝐾)𝑋 ∧ 𝑋(le‘𝐾)𝑋) ↔ 𝑋(le‘𝐾)(𝑋 ∧ 𝑋))) |
12 | 3, 7, 7, 7, 11 | syl13anc 1479 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → ((𝑋(le‘𝐾)𝑋 ∧ 𝑋(le‘𝐾)𝑋) ↔ 𝑋(le‘𝐾)(𝑋 ∧ 𝑋))) |
13 | 10, 10, 12 | mpbi2and 994 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → 𝑋(le‘𝐾)(𝑋 ∧ 𝑋)) |
14 | 1, 2, 3, 6, 7, 9, 13 | latasymd 17279 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → (𝑋 ∧ 𝑋) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2140 class class class wbr 4805 ‘cfv 6050 (class class class)co 6815 Basecbs 16080 lecple 16171 meetcmee 17167 Latclat 17267 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-rep 4924 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-ral 3056 df-rex 3057 df-reu 3058 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-op 4329 df-uni 4590 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-id 5175 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-riota 6776 df-ov 6818 df-oprab 6819 df-preset 17150 df-poset 17168 df-lub 17196 df-glb 17197 df-join 17198 df-meet 17199 df-lat 17268 |
This theorem is referenced by: latmmdiN 35043 latmmdir 35044 2llnm3N 35377 |
Copyright terms: Public domain | W3C validator |