![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > latmcom | Structured version Visualization version GIF version |
Description: The join of a lattice commutes. (Contributed by NM, 6-Nov-2011.) |
Ref | Expression |
---|---|
latmcom.b | ⊢ 𝐵 = (Base‘𝐾) |
latmcom.m | ⊢ ∧ = (meet‘𝐾) |
Ref | Expression |
---|---|
latmcom | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) = (𝑌 ∧ 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpi 5288 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) | |
2 | 1 | 3adant1 1123 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) |
3 | latmcom.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐾) | |
4 | eqid 2770 | . . . . . . 7 ⊢ (join‘𝐾) = (join‘𝐾) | |
5 | latmcom.m | . . . . . . 7 ⊢ ∧ = (meet‘𝐾) | |
6 | 3, 4, 5 | islat 17254 | . . . . . 6 ⊢ (𝐾 ∈ Lat ↔ (𝐾 ∈ Poset ∧ (dom (join‘𝐾) = (𝐵 × 𝐵) ∧ dom ∧ = (𝐵 × 𝐵)))) |
7 | simprr 748 | . . . . . 6 ⊢ ((𝐾 ∈ Poset ∧ (dom (join‘𝐾) = (𝐵 × 𝐵) ∧ dom ∧ = (𝐵 × 𝐵))) → dom ∧ = (𝐵 × 𝐵)) | |
8 | 6, 7 | sylbi 207 | . . . . 5 ⊢ (𝐾 ∈ Lat → dom ∧ = (𝐵 × 𝐵)) |
9 | 8 | 3ad2ant1 1126 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → dom ∧ = (𝐵 × 𝐵)) |
10 | 2, 9 | eleqtrrd 2852 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑋, 𝑌〉 ∈ dom ∧ ) |
11 | opelxpi 5288 | . . . . . 6 ⊢ ((𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → 〈𝑌, 𝑋〉 ∈ (𝐵 × 𝐵)) | |
12 | 11 | ancoms 455 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑌, 𝑋〉 ∈ (𝐵 × 𝐵)) |
13 | 12 | 3adant1 1123 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑌, 𝑋〉 ∈ (𝐵 × 𝐵)) |
14 | 13, 9 | eleqtrrd 2852 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑌, 𝑋〉 ∈ dom ∧ ) |
15 | 10, 14 | jca 495 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (〈𝑋, 𝑌〉 ∈ dom ∧ ∧ 〈𝑌, 𝑋〉 ∈ dom ∧ )) |
16 | latpos 17257 | . . 3 ⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) | |
17 | 3, 5 | meetcom 17239 | . . 3 ⊢ (((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (〈𝑋, 𝑌〉 ∈ dom ∧ ∧ 〈𝑌, 𝑋〉 ∈ dom ∧ )) → (𝑋 ∧ 𝑌) = (𝑌 ∧ 𝑋)) |
18 | 16, 17 | syl3anl1 1519 | . 2 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (〈𝑋, 𝑌〉 ∈ dom ∧ ∧ 〈𝑌, 𝑋〉 ∈ dom ∧ )) → (𝑋 ∧ 𝑌) = (𝑌 ∧ 𝑋)) |
19 | 15, 18 | mpdan 659 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) = (𝑌 ∧ 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∧ w3a 1070 = wceq 1630 ∈ wcel 2144 〈cop 4320 × cxp 5247 dom cdm 5249 ‘cfv 6031 (class class class)co 6792 Basecbs 16063 Posetcpo 17147 joincjn 17151 meetcmee 17152 Latclat 17252 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-ral 3065 df-rex 3066 df-reu 3067 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6753 df-ov 6795 df-oprab 6796 df-glb 17182 df-meet 17184 df-lat 17253 |
This theorem is referenced by: latleeqm2 17287 latmlem2 17289 latmlej21 17299 latmlej22 17300 mod2ile 17313 olm12 35030 latm12 35032 latm32 35033 latmrot 35034 olm02 35039 omllaw2N 35046 cmtcomlemN 35050 cmtbr3N 35056 omlfh1N 35060 omlmod1i2N 35062 omlspjN 35063 cvlcvrp 35142 intnatN 35208 cvrexch 35221 cvrat4 35244 2atjm 35246 1cvrat 35277 2at0mat0 35326 dalem4 35466 dalem56 35529 atmod2i1 35662 atmod2i2 35663 llnmod2i2 35664 atmod3i1 35665 atmod3i2 35666 llnexchb2lem 35669 dalawlem3 35674 dalawlem4 35675 dalawlem6 35677 dalawlem9 35680 dalawlem11 35682 dalawlem12 35683 dalawlem15 35686 lhpmcvr 35824 4atexlemc 35870 cdleme20zN 36103 cdleme20d 36114 cdleme20l 36124 cdleme20m 36125 cdlemg12 36452 cdlemg17 36479 cdlemg19 36486 cdlemg44a 36533 dihmeetlem17N 37126 dihmeetlem20N 37129 dihmeetALTN 37130 |
Copyright terms: Public domain | W3C validator |