MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latlej2 Structured version   Visualization version   GIF version

Theorem latlej2 17269
Description: A join's second argument is less than or equal to the join. (chub2 28707 analog.) (Contributed by NM, 17-Sep-2011.)
Hypotheses
Ref Expression
latlej.b 𝐵 = (Base‘𝐾)
latlej.l = (le‘𝐾)
latlej.j = (join‘𝐾)
Assertion
Ref Expression
latlej2 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑌 (𝑋 𝑌))

Proof of Theorem latlej2
StepHypRef Expression
1 latlej.b . 2 𝐵 = (Base‘𝐾)
2 latlej.l . 2 = (le‘𝐾)
3 latlej.j . 2 = (join‘𝐾)
4 simp1 1130 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ Lat)
5 simp2 1131 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
6 simp3 1132 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
7 eqid 2771 . . . 4 (meet‘𝐾) = (meet‘𝐾)
81, 3, 7, 4, 5, 6latcl2 17256 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (⟨𝑋, 𝑌⟩ ∈ dom ∧ ⟨𝑋, 𝑌⟩ ∈ dom (meet‘𝐾)))
98simpld 482 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ⟨𝑋, 𝑌⟩ ∈ dom )
101, 2, 3, 4, 5, 6, 9lejoin2 17221 1 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑌 (𝑋 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1071   = wceq 1631  wcel 2145  cop 4323   class class class wbr 4787  dom cdm 5250  cfv 6030  (class class class)co 6796  Basecbs 16064  lecple 16156  joincjn 17152  meetcmee 17153  Latclat 17253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-lub 17182  df-join 17184  df-lat 17254
This theorem is referenced by:  latleeqj1  17271  latjlej1  17273  latnlej  17276  latnlej2  17279  latjass  17303  lubun  17331  oldmm1  35026  cmtcomlemN  35057  cmtbr4N  35064  cvlexchb1  35139  cvlatexch1  35145  cvrval5  35224  2llnjaN  35375  4atlem3b  35407  2lplnja  35428  dalem5  35476  dalem17  35489  dalem39  35520  dalem43  35524  elpaddn0  35609  pmapjoin  35661  dalawlem2  35681  dalawlem11  35690  dalawlem12  35691  lautj  35902  trljat2  35977  cdleme0cq  36025  cdleme1  36037  cdleme3  36047  cdleme5  36050  cdleme7ga  36058  cdleme10  36064  cdleme15b  36085  cdleme16b  36089  cdleme20k  36129  cdleme22e  36154  cdleme22eALTN  36155  cdleme23c  36161  cdleme28a  36180  cdleme32e  36255  cdleme35a  36258  cdlemg4c  36422  cdlemg6c  36430  trlcolem  36536  cdlemi1  36628  dia2dimlem2  36875  cdlemm10N  36928  dihord2pre2  37036  dihord5apre  37072  dihjatc1  37121
  Copyright terms: Public domain W3C validator