MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latleeqm2 Structured version   Visualization version   GIF version

Theorem latleeqm2 17288
Description: Less-than-or-equal-to in terms of meet. (Contributed by NM, 7-Nov-2011.)
Hypotheses
Ref Expression
latmle.b 𝐵 = (Base‘𝐾)
latmle.l = (le‘𝐾)
latmle.m = (meet‘𝐾)
Assertion
Ref Expression
latleeqm2 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ (𝑌 𝑋) = 𝑋))

Proof of Theorem latleeqm2
StepHypRef Expression
1 latmle.b . . 3 𝐵 = (Base‘𝐾)
2 latmle.l . . 3 = (le‘𝐾)
3 latmle.m . . 3 = (meet‘𝐾)
41, 2, 3latleeqm1 17287 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ (𝑋 𝑌) = 𝑋))
51, 3latmcom 17283 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑌 𝑋))
65eqeq1d 2773 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌) = 𝑋 ↔ (𝑌 𝑋) = 𝑋))
74, 6bitrd 268 1 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ (𝑌 𝑋) = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  w3a 1071   = wceq 1631  wcel 2145   class class class wbr 4786  cfv 6031  (class class class)co 6793  Basecbs 16064  lecple 16156  meetcmee 17153  Latclat 17253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-preset 17136  df-poset 17154  df-lub 17182  df-glb 17183  df-join 17184  df-meet 17185  df-lat 17254
This theorem is referenced by:  cmtcomlemN  35057  omlmod1i2N  35069  2llnma3r  35596  dalawlem7  35685  dalawlem11  35689  dalawlem12  35690  lhp2at0  35840  lhp2atnle  35841  cdleme9  36062  cdleme11g  36074  cdleme35c  36260  cdlemh1  36624  dia2dimlem2  36875  dia2dimlem3  36876  dihmeetlem15N  37131
  Copyright terms: Public domain W3C validator