![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > latjle12 | Structured version Visualization version GIF version |
Description: A join is less than or equal to a third value iff each argument is less than or equal to the third value. (chlub 28677 analog.) (Contributed by NM, 17-Sep-2011.) |
Ref | Expression |
---|---|
latlej.b | ⊢ 𝐵 = (Base‘𝐾) |
latlej.l | ⊢ ≤ = (le‘𝐾) |
latlej.j | ⊢ ∨ = (join‘𝐾) |
Ref | Expression |
---|---|
latjle12 | ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑍 ∧ 𝑌 ≤ 𝑍) ↔ (𝑋 ∨ 𝑌) ≤ 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latlej.b | . 2 ⊢ 𝐵 = (Base‘𝐾) | |
2 | latlej.l | . 2 ⊢ ≤ = (le‘𝐾) | |
3 | latlej.j | . 2 ⊢ ∨ = (join‘𝐾) | |
4 | latpos 17251 | . . 3 ⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) | |
5 | 4 | adantr 472 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝐾 ∈ Poset) |
6 | simpr1 1234 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | |
7 | simpr2 1236 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑌 ∈ 𝐵) | |
8 | simpr3 1238 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑍 ∈ 𝐵) | |
9 | eqid 2760 | . . . 4 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
10 | simpl 474 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝐾 ∈ Lat) | |
11 | 1, 3, 9, 10, 6, 7 | latcl2 17249 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (〈𝑋, 𝑌〉 ∈ dom ∨ ∧ 〈𝑋, 𝑌〉 ∈ dom (meet‘𝐾))) |
12 | 11 | simpld 477 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 〈𝑋, 𝑌〉 ∈ dom ∨ ) |
13 | 1, 2, 3, 5, 6, 7, 8, 12 | joinle 17215 | 1 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑍 ∧ 𝑌 ≤ 𝑍) ↔ (𝑋 ∨ 𝑌) ≤ 𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 〈cop 4327 class class class wbr 4804 dom cdm 5266 ‘cfv 6049 (class class class)co 6813 Basecbs 16059 lecple 16150 Posetcpo 17141 joincjn 17145 meetcmee 17146 Latclat 17246 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-poset 17147 df-lub 17175 df-join 17177 df-lat 17247 |
This theorem is referenced by: latleeqj1 17264 latjlej1 17266 latjidm 17275 latledi 17290 latjass 17296 mod1ile 17306 lubun 17324 oldmm1 35007 olj01 35015 cvlexchb1 35120 cvlcvr1 35129 hlrelat 35191 hlrelat2 35192 exatleN 35193 hlrelat3 35201 cvrexchlem 35208 cvratlem 35210 cvrat 35211 atlelt 35227 ps-1 35266 hlatexch3N 35269 hlatexch4 35270 3atlem1 35272 3atlem2 35273 lplnexllnN 35353 2llnjaN 35355 4atlem3 35385 4atlem10 35395 4atlem11b 35397 4atlem11 35398 4atlem12b 35400 4atlem12 35401 2lplnja 35408 dalem1 35448 dalem3 35453 dalem8 35459 dalem16 35468 dalem17 35469 dalem21 35483 dalem25 35487 dalem39 35500 dalem54 35515 dalem60 35521 linepsubN 35541 pmapsub 35557 lneq2at 35567 2llnma3r 35577 cdlema1N 35580 cdlemblem 35582 paddasslem5 35613 paddasslem12 35620 paddasslem13 35621 llnexchb2 35658 dalawlem3 35662 dalawlem5 35664 dalawlem8 35667 dalawlem11 35670 dalawlem12 35671 lhp2lt 35790 lhpexle2lem 35798 lhpexle3lem 35800 4atexlemtlw 35856 4atexlemnclw 35859 lautj 35882 cdlemd3 35990 cdleme3g 36024 cdleme3h 36025 cdleme7d 36036 cdleme11c 36051 cdleme15d 36067 cdleme17b 36077 cdleme19a 36093 cdleme20j 36108 cdleme21c 36117 cdleme22b 36131 cdleme22d 36133 cdleme28a 36160 cdleme35a 36238 cdleme35fnpq 36239 cdleme35b 36240 cdleme35f 36244 cdleme42c 36262 cdleme42i 36273 cdlemf1 36351 cdlemg4c 36402 cdlemg6c 36410 cdlemg8b 36418 cdlemg10 36431 cdlemg11b 36432 cdlemg13a 36441 cdlemg17a 36451 cdlemg18b 36469 cdlemg27a 36482 cdlemg33b0 36491 cdlemg35 36503 cdlemg42 36519 cdlemg46 36525 trljco 36530 tendopltp 36570 cdlemk3 36623 cdlemk10 36633 cdlemk1u 36649 cdlemk39 36706 dialss 36837 dia2dimlem1 36855 dia2dimlem10 36864 dia2dimlem12 36866 cdlemm10N 36909 djajN 36928 diblss 36961 cdlemn2 36986 dihord2pre2 37017 dib2dim 37034 dih2dimb 37035 dih2dimbALTN 37036 dihmeetlem6 37100 dihjatcclem1 37209 |
Copyright terms: Public domain | W3C validator |