![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > latjcom | Structured version Visualization version GIF version |
Description: The join of a lattice commutes. (chjcom 28699 analog.) (Contributed by NM, 16-Sep-2011.) |
Ref | Expression |
---|---|
latjcom.b | ⊢ 𝐵 = (Base‘𝐾) |
latjcom.j | ⊢ ∨ = (join‘𝐾) |
Ref | Expression |
---|---|
latjcom | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ 𝑌) = (𝑌 ∨ 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpi 5288 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) | |
2 | 1 | 3adant1 1123 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) |
3 | latjcom.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐾) | |
4 | latjcom.j | . . . . . . 7 ⊢ ∨ = (join‘𝐾) | |
5 | eqid 2770 | . . . . . . 7 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
6 | 3, 4, 5 | islat 17254 | . . . . . 6 ⊢ (𝐾 ∈ Lat ↔ (𝐾 ∈ Poset ∧ (dom ∨ = (𝐵 × 𝐵) ∧ dom (meet‘𝐾) = (𝐵 × 𝐵)))) |
7 | simprl 746 | . . . . . 6 ⊢ ((𝐾 ∈ Poset ∧ (dom ∨ = (𝐵 × 𝐵) ∧ dom (meet‘𝐾) = (𝐵 × 𝐵))) → dom ∨ = (𝐵 × 𝐵)) | |
8 | 6, 7 | sylbi 207 | . . . . 5 ⊢ (𝐾 ∈ Lat → dom ∨ = (𝐵 × 𝐵)) |
9 | 8 | 3ad2ant1 1126 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → dom ∨ = (𝐵 × 𝐵)) |
10 | 2, 9 | eleqtrrd 2852 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑋, 𝑌〉 ∈ dom ∨ ) |
11 | opelxpi 5288 | . . . . . 6 ⊢ ((𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → 〈𝑌, 𝑋〉 ∈ (𝐵 × 𝐵)) | |
12 | 11 | ancoms 455 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑌, 𝑋〉 ∈ (𝐵 × 𝐵)) |
13 | 12 | 3adant1 1123 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑌, 𝑋〉 ∈ (𝐵 × 𝐵)) |
14 | 13, 9 | eleqtrrd 2852 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑌, 𝑋〉 ∈ dom ∨ ) |
15 | 10, 14 | jca 495 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (〈𝑋, 𝑌〉 ∈ dom ∨ ∧ 〈𝑌, 𝑋〉 ∈ dom ∨ )) |
16 | latpos 17257 | . . 3 ⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) | |
17 | 3, 4 | joincom 17237 | . . 3 ⊢ (((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (〈𝑋, 𝑌〉 ∈ dom ∨ ∧ 〈𝑌, 𝑋〉 ∈ dom ∨ )) → (𝑋 ∨ 𝑌) = (𝑌 ∨ 𝑋)) |
18 | 16, 17 | syl3anl1 1519 | . 2 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (〈𝑋, 𝑌〉 ∈ dom ∨ ∧ 〈𝑌, 𝑋〉 ∈ dom ∨ )) → (𝑋 ∨ 𝑌) = (𝑌 ∨ 𝑋)) |
19 | 15, 18 | mpdan 659 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ 𝑌) = (𝑌 ∨ 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∧ w3a 1070 = wceq 1630 ∈ wcel 2144 〈cop 4320 × cxp 5247 dom cdm 5249 ‘cfv 6031 (class class class)co 6792 Basecbs 16063 Posetcpo 17147 joincjn 17151 meetcmee 17152 Latclat 17252 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-ral 3065 df-rex 3066 df-reu 3067 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6753 df-ov 6795 df-oprab 6796 df-lub 17181 df-join 17183 df-lat 17253 |
This theorem is referenced by: latleeqj2 17271 latjlej2 17273 latnle 17292 latmlej12 17298 latj12 17303 latj32 17304 latj13 17305 latj31 17306 latj4rot 17309 mod2ile 17313 latdisdlem 17396 olj02 35028 omllaw4 35048 cmt2N 35052 cmtbr3N 35056 cvlexch2 35131 cvlexchb2 35133 cvlatexchb2 35137 cvlatexch2 35139 cvlatexch3 35140 cvlatcvr2 35144 cvlsupr2 35145 cvlsupr7 35150 cvlsupr8 35151 hlatjcom 35169 hlrelat5N 35202 cvrval5 35216 cvrexch 35221 cvratlem 35222 cvrat 35223 2atlt 35240 cvrat3 35243 cvrat4 35244 cvrat42 35245 4noncolr3 35254 1cvrat 35277 3atlem1 35284 4atlem4d 35403 4atlem12 35413 paddcom 35614 paddasslem2 35622 pmapjat2 35655 atmod2i1 35662 atmod2i2 35663 llnmod2i2 35664 atmod4i1 35667 atmod4i2 35668 dalawlem4 35675 dalawlem9 35680 dalawlem12 35683 lhpjat2 35822 lhple 35843 trljat1 35968 trljat2 35969 cdlemc1 35993 cdlemc6 35998 cdlemd1 36000 cdleme5 36042 cdleme9 36055 cdleme10 36056 cdleme19e 36109 trlcolem 36528 trljco2 36543 cdlemk7 36650 cdlemk7u 36672 cdlemkid1 36724 dih1 37089 dihjatc2N 37115 |
Copyright terms: Public domain | W3C validator |