Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  latjass Structured version   Visualization version   GIF version

Theorem latjass 17316
 Description: Lattice join is associative. Lemma 2.2 in [MegPav2002] p. 362. (chjass 28722 analog.) (Contributed by NM, 17-Sep-2011.)
Hypotheses
Ref Expression
latjass.b 𝐵 = (Base‘𝐾)
latjass.j = (join‘𝐾)
Assertion
Ref Expression
latjass ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) 𝑍) = (𝑋 (𝑌 𝑍)))

Proof of Theorem latjass
StepHypRef Expression
1 latjass.b . 2 𝐵 = (Base‘𝐾)
2 eqid 2760 . 2 (le‘𝐾) = (le‘𝐾)
3 simpl 474 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐾 ∈ Lat)
4 latjass.j . . . . 5 = (join‘𝐾)
51, 4latjcl 17272 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
653adant3r3 1200 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑌) ∈ 𝐵)
7 simpr3 1238 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍𝐵)
81, 4latjcl 17272 . . 3 ((𝐾 ∈ Lat ∧ (𝑋 𝑌) ∈ 𝐵𝑍𝐵) → ((𝑋 𝑌) 𝑍) ∈ 𝐵)
93, 6, 7, 8syl3anc 1477 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) 𝑍) ∈ 𝐵)
10 simpr1 1234 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋𝐵)
111, 4latjcl 17272 . . . 4 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑍𝐵) → (𝑌 𝑍) ∈ 𝐵)
12113adant3r1 1198 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑌 𝑍) ∈ 𝐵)
131, 4latjcl 17272 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑌 𝑍) ∈ 𝐵) → (𝑋 (𝑌 𝑍)) ∈ 𝐵)
143, 10, 12, 13syl3anc 1477 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 (𝑌 𝑍)) ∈ 𝐵)
151, 2, 4latlej1 17281 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑌 𝑍) ∈ 𝐵) → 𝑋(le‘𝐾)(𝑋 (𝑌 𝑍)))
163, 10, 12, 15syl3anc 1477 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋(le‘𝐾)(𝑋 (𝑌 𝑍)))
17 simpr2 1236 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌𝐵)
181, 2, 4latlej1 17281 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑍𝐵) → 𝑌(le‘𝐾)(𝑌 𝑍))
19183adant3r1 1198 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌(le‘𝐾)(𝑌 𝑍))
201, 2, 4latlej2 17282 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑌 𝑍) ∈ 𝐵) → (𝑌 𝑍)(le‘𝐾)(𝑋 (𝑌 𝑍)))
213, 10, 12, 20syl3anc 1477 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑌 𝑍)(le‘𝐾)(𝑋 (𝑌 𝑍)))
221, 2, 3, 17, 12, 14, 19, 21lattrd 17279 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌(le‘𝐾)(𝑋 (𝑌 𝑍)))
231, 2, 4latjle12 17283 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑋 (𝑌 𝑍)) ∈ 𝐵)) → ((𝑋(le‘𝐾)(𝑋 (𝑌 𝑍)) ∧ 𝑌(le‘𝐾)(𝑋 (𝑌 𝑍))) ↔ (𝑋 𝑌)(le‘𝐾)(𝑋 (𝑌 𝑍))))
243, 10, 17, 14, 23syl13anc 1479 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋(le‘𝐾)(𝑋 (𝑌 𝑍)) ∧ 𝑌(le‘𝐾)(𝑋 (𝑌 𝑍))) ↔ (𝑋 𝑌)(le‘𝐾)(𝑋 (𝑌 𝑍))))
2516, 22, 24mpbi2and 994 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑌)(le‘𝐾)(𝑋 (𝑌 𝑍)))
261, 2, 4latlej2 17282 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑍𝐵) → 𝑍(le‘𝐾)(𝑌 𝑍))
27263adant3r1 1198 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍(le‘𝐾)(𝑌 𝑍))
281, 2, 3, 7, 12, 14, 27, 21lattrd 17279 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍(le‘𝐾)(𝑋 (𝑌 𝑍)))
291, 2, 4latjle12 17283 . . . 4 ((𝐾 ∈ Lat ∧ ((𝑋 𝑌) ∈ 𝐵𝑍𝐵 ∧ (𝑋 (𝑌 𝑍)) ∈ 𝐵)) → (((𝑋 𝑌)(le‘𝐾)(𝑋 (𝑌 𝑍)) ∧ 𝑍(le‘𝐾)(𝑋 (𝑌 𝑍))) ↔ ((𝑋 𝑌) 𝑍)(le‘𝐾)(𝑋 (𝑌 𝑍))))
303, 6, 7, 14, 29syl13anc 1479 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((𝑋 𝑌)(le‘𝐾)(𝑋 (𝑌 𝑍)) ∧ 𝑍(le‘𝐾)(𝑋 (𝑌 𝑍))) ↔ ((𝑋 𝑌) 𝑍)(le‘𝐾)(𝑋 (𝑌 𝑍))))
3125, 28, 30mpbi2and 994 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) 𝑍)(le‘𝐾)(𝑋 (𝑌 𝑍)))
321, 2, 4latlej1 17281 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑋(le‘𝐾)(𝑋 𝑌))
33323adant3r3 1200 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋(le‘𝐾)(𝑋 𝑌))
341, 2, 4latlej1 17281 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋 𝑌) ∈ 𝐵𝑍𝐵) → (𝑋 𝑌)(le‘𝐾)((𝑋 𝑌) 𝑍))
353, 6, 7, 34syl3anc 1477 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑌)(le‘𝐾)((𝑋 𝑌) 𝑍))
361, 2, 3, 10, 6, 9, 33, 35lattrd 17279 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋(le‘𝐾)((𝑋 𝑌) 𝑍))
371, 2, 4latlej2 17282 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑌(le‘𝐾)(𝑋 𝑌))
38373adant3r3 1200 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌(le‘𝐾)(𝑋 𝑌))
391, 2, 3, 17, 6, 9, 38, 35lattrd 17279 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌(le‘𝐾)((𝑋 𝑌) 𝑍))
401, 2, 4latlej2 17282 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋 𝑌) ∈ 𝐵𝑍𝐵) → 𝑍(le‘𝐾)((𝑋 𝑌) 𝑍))
413, 6, 7, 40syl3anc 1477 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍(le‘𝐾)((𝑋 𝑌) 𝑍))
421, 2, 4latjle12 17283 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑌𝐵𝑍𝐵 ∧ ((𝑋 𝑌) 𝑍) ∈ 𝐵)) → ((𝑌(le‘𝐾)((𝑋 𝑌) 𝑍) ∧ 𝑍(le‘𝐾)((𝑋 𝑌) 𝑍)) ↔ (𝑌 𝑍)(le‘𝐾)((𝑋 𝑌) 𝑍)))
433, 17, 7, 9, 42syl13anc 1479 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑌(le‘𝐾)((𝑋 𝑌) 𝑍) ∧ 𝑍(le‘𝐾)((𝑋 𝑌) 𝑍)) ↔ (𝑌 𝑍)(le‘𝐾)((𝑋 𝑌) 𝑍)))
4439, 41, 43mpbi2and 994 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑌 𝑍)(le‘𝐾)((𝑋 𝑌) 𝑍))
451, 2, 4latjle12 17283 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵 ∧ (𝑌 𝑍) ∈ 𝐵 ∧ ((𝑋 𝑌) 𝑍) ∈ 𝐵)) → ((𝑋(le‘𝐾)((𝑋 𝑌) 𝑍) ∧ (𝑌 𝑍)(le‘𝐾)((𝑋 𝑌) 𝑍)) ↔ (𝑋 (𝑌 𝑍))(le‘𝐾)((𝑋 𝑌) 𝑍)))
463, 10, 12, 9, 45syl13anc 1479 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋(le‘𝐾)((𝑋 𝑌) 𝑍) ∧ (𝑌 𝑍)(le‘𝐾)((𝑋 𝑌) 𝑍)) ↔ (𝑋 (𝑌 𝑍))(le‘𝐾)((𝑋 𝑌) 𝑍)))
4736, 44, 46mpbi2and 994 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 (𝑌 𝑍))(le‘𝐾)((𝑋 𝑌) 𝑍))
481, 2, 3, 9, 14, 31, 47latasymd 17278 1 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) 𝑍) = (𝑋 (𝑌 𝑍)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2139   class class class wbr 4804  ‘cfv 6049  (class class class)co 6814  Basecbs 16079  lecple 16170  joincjn 17165  Latclat 17266 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-preset 17149  df-poset 17167  df-lub 17195  df-glb 17196  df-join 17197  df-meet 17198  df-lat 17267 This theorem is referenced by:  latj12  17317  latj32  17318  latj4  17322  latmass  17409  latmassOLD  35037  hlatjass  35177  cvrexchlem  35226  cvrat3  35249  2atmat  35368  4atlem3  35403  4atlem3a  35404  4atlem4a  35406  4atlem4d  35409  4at2  35421  2lplnja  35426  pmapjlln1  35662  dalawlem3  35680  dalawlem12  35689  cdleme30a  36186  trlcolem  36534  cdlemh1  36623  cdlemkid1  36730  doca2N  36935  djajN  36946
 Copyright terms: Public domain W3C validator