![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > l2p | Structured version Visualization version GIF version |
Description: For any line in a planar incidence geometry, there exist two different points on the line. (Contributed by AV, 28-Nov-2021.) |
Ref | Expression |
---|---|
l2p.1 | ⊢ 𝑃 = ∪ 𝐺 |
Ref | Expression |
---|---|
l2p | ⊢ ((𝐺 ∈ Plig ∧ 𝐿 ∈ 𝐺) → ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 (𝑎 ≠ 𝑏 ∧ 𝑎 ∈ 𝐿 ∧ 𝑏 ∈ 𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | l2p.1 | . . . . 5 ⊢ 𝑃 = ∪ 𝐺 | |
2 | 1 | isplig 27664 | . . . 4 ⊢ (𝐺 ∈ Plig → (𝐺 ∈ Plig ↔ (∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 (𝑎 ≠ 𝑏 → ∃!𝑙 ∈ 𝐺 (𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙)) ∧ ∀𝑙 ∈ 𝐺 ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 (𝑎 ≠ 𝑏 ∧ 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙) ∧ ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 ∃𝑐 ∈ 𝑃 ∀𝑙 ∈ 𝐺 ¬ (𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ∧ 𝑐 ∈ 𝑙)))) |
3 | eleq2 2838 | . . . . . . . 8 ⊢ (𝑙 = 𝐿 → (𝑎 ∈ 𝑙 ↔ 𝑎 ∈ 𝐿)) | |
4 | eleq2 2838 | . . . . . . . 8 ⊢ (𝑙 = 𝐿 → (𝑏 ∈ 𝑙 ↔ 𝑏 ∈ 𝐿)) | |
5 | 3, 4 | 3anbi23d 1549 | . . . . . . 7 ⊢ (𝑙 = 𝐿 → ((𝑎 ≠ 𝑏 ∧ 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙) ↔ (𝑎 ≠ 𝑏 ∧ 𝑎 ∈ 𝐿 ∧ 𝑏 ∈ 𝐿))) |
6 | 5 | 2rexbidv 3204 | . . . . . 6 ⊢ (𝑙 = 𝐿 → (∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 (𝑎 ≠ 𝑏 ∧ 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙) ↔ ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 (𝑎 ≠ 𝑏 ∧ 𝑎 ∈ 𝐿 ∧ 𝑏 ∈ 𝐿))) |
7 | 6 | rspccv 3455 | . . . . 5 ⊢ (∀𝑙 ∈ 𝐺 ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 (𝑎 ≠ 𝑏 ∧ 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙) → (𝐿 ∈ 𝐺 → ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 (𝑎 ≠ 𝑏 ∧ 𝑎 ∈ 𝐿 ∧ 𝑏 ∈ 𝐿))) |
8 | 7 | 3ad2ant2 1127 | . . . 4 ⊢ ((∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 (𝑎 ≠ 𝑏 → ∃!𝑙 ∈ 𝐺 (𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙)) ∧ ∀𝑙 ∈ 𝐺 ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 (𝑎 ≠ 𝑏 ∧ 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙) ∧ ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 ∃𝑐 ∈ 𝑃 ∀𝑙 ∈ 𝐺 ¬ (𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ∧ 𝑐 ∈ 𝑙)) → (𝐿 ∈ 𝐺 → ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 (𝑎 ≠ 𝑏 ∧ 𝑎 ∈ 𝐿 ∧ 𝑏 ∈ 𝐿))) |
9 | 2, 8 | syl6bi 243 | . . 3 ⊢ (𝐺 ∈ Plig → (𝐺 ∈ Plig → (𝐿 ∈ 𝐺 → ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 (𝑎 ≠ 𝑏 ∧ 𝑎 ∈ 𝐿 ∧ 𝑏 ∈ 𝐿)))) |
10 | 9 | pm2.43i 52 | . 2 ⊢ (𝐺 ∈ Plig → (𝐿 ∈ 𝐺 → ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 (𝑎 ≠ 𝑏 ∧ 𝑎 ∈ 𝐿 ∧ 𝑏 ∈ 𝐿))) |
11 | 10 | imp 393 | 1 ⊢ ((𝐺 ∈ Plig ∧ 𝐿 ∈ 𝐺) → ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 (𝑎 ≠ 𝑏 ∧ 𝑎 ∈ 𝐿 ∧ 𝑏 ∈ 𝐿)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 382 ∧ w3a 1070 = wceq 1630 ∈ wcel 2144 ≠ wne 2942 ∀wral 3060 ∃wrex 3061 ∃!wreu 3062 ∪ cuni 4572 Pligcplig 27662 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ral 3065 df-rex 3066 df-reu 3067 df-v 3351 df-uni 4573 df-plig 27663 |
This theorem is referenced by: nsnlplig 27669 nsnlpligALT 27670 n0lpligALT 27672 |
Copyright terms: Public domain | W3C validator |