![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > l1cvat | Structured version Visualization version GIF version |
Description: Create an atom under an element covered by the lattice unit. Part of proof of Lemma B in [Crawley] p. 112. (1cvrat 35285 analog.) (Contributed by NM, 11-Jan-2015.) |
Ref | Expression |
---|---|
l1cvat.v | ⊢ 𝑉 = (Base‘𝑊) |
l1cvat.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
l1cvat.p | ⊢ ⊕ = (LSSum‘𝑊) |
l1cvat.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
l1cvat.c | ⊢ 𝐶 = ( ⋖L ‘𝑊) |
l1cvat.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
l1cvat.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
l1cvat.q | ⊢ (𝜑 → 𝑄 ∈ 𝐴) |
l1cvat.r | ⊢ (𝜑 → 𝑅 ∈ 𝐴) |
l1cvat.n | ⊢ (𝜑 → 𝑄 ≠ 𝑅) |
l1cvat.l | ⊢ (𝜑 → 𝑈𝐶𝑉) |
l1cvat.m | ⊢ (𝜑 → ¬ 𝑄 ⊆ 𝑈) |
Ref | Expression |
---|---|
l1cvat | ⊢ (𝜑 → ((𝑄 ⊕ 𝑅) ∩ 𝑈) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | l1cvat.w | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
2 | lveclmod 19319 | . . . . . . 7 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
3 | 1, 2 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LMod) |
4 | lmodabl 19120 | . . . . . 6 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Abel) | |
5 | 3, 4 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ Abel) |
6 | l1cvat.s | . . . . . . . 8 ⊢ 𝑆 = (LSubSp‘𝑊) | |
7 | 6 | lsssssubg 19171 | . . . . . . 7 ⊢ (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊)) |
8 | 3, 7 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ (SubGrp‘𝑊)) |
9 | l1cvat.a | . . . . . . 7 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
10 | l1cvat.q | . . . . . . 7 ⊢ (𝜑 → 𝑄 ∈ 𝐴) | |
11 | 6, 9, 3, 10 | lsatlssel 34806 | . . . . . 6 ⊢ (𝜑 → 𝑄 ∈ 𝑆) |
12 | 8, 11 | sseldd 3753 | . . . . 5 ⊢ (𝜑 → 𝑄 ∈ (SubGrp‘𝑊)) |
13 | l1cvat.r | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ 𝐴) | |
14 | 6, 9, 3, 13 | lsatlssel 34806 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ 𝑆) |
15 | 8, 14 | sseldd 3753 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ (SubGrp‘𝑊)) |
16 | l1cvat.p | . . . . . 6 ⊢ ⊕ = (LSSum‘𝑊) | |
17 | 16 | lsmcom 18468 | . . . . 5 ⊢ ((𝑊 ∈ Abel ∧ 𝑄 ∈ (SubGrp‘𝑊) ∧ 𝑅 ∈ (SubGrp‘𝑊)) → (𝑄 ⊕ 𝑅) = (𝑅 ⊕ 𝑄)) |
18 | 5, 12, 15, 17 | syl3anc 1476 | . . . 4 ⊢ (𝜑 → (𝑄 ⊕ 𝑅) = (𝑅 ⊕ 𝑄)) |
19 | 18 | ineq1d 3964 | . . 3 ⊢ (𝜑 → ((𝑄 ⊕ 𝑅) ∩ 𝑈) = ((𝑅 ⊕ 𝑄) ∩ 𝑈)) |
20 | incom 3956 | . . 3 ⊢ ((𝑅 ⊕ 𝑄) ∩ 𝑈) = (𝑈 ∩ (𝑅 ⊕ 𝑄)) | |
21 | 19, 20 | syl6eq 2821 | . 2 ⊢ (𝜑 → ((𝑄 ⊕ 𝑅) ∩ 𝑈) = (𝑈 ∩ (𝑅 ⊕ 𝑄))) |
22 | l1cvat.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
23 | l1cvat.n | . . . 4 ⊢ (𝜑 → 𝑄 ≠ 𝑅) | |
24 | 23 | necomd 2998 | . . 3 ⊢ (𝜑 → 𝑅 ≠ 𝑄) |
25 | l1cvat.m | . . 3 ⊢ (𝜑 → ¬ 𝑄 ⊆ 𝑈) | |
26 | l1cvat.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
27 | 26, 9, 3, 13 | lsatssv 34807 | . . . 4 ⊢ (𝜑 → 𝑅 ⊆ 𝑉) |
28 | l1cvat.c | . . . . 5 ⊢ 𝐶 = ( ⋖L ‘𝑊) | |
29 | l1cvat.l | . . . . 5 ⊢ (𝜑 → 𝑈𝐶𝑉) | |
30 | 26, 6, 16, 9, 28, 1, 22, 10, 29, 25 | l1cvpat 34863 | . . . 4 ⊢ (𝜑 → (𝑈 ⊕ 𝑄) = 𝑉) |
31 | 27, 30 | sseqtr4d 3791 | . . 3 ⊢ (𝜑 → 𝑅 ⊆ (𝑈 ⊕ 𝑄)) |
32 | 6, 16, 9, 1, 22, 13, 10, 24, 25, 31 | lsatcvat3 34861 | . 2 ⊢ (𝜑 → (𝑈 ∩ (𝑅 ⊕ 𝑄)) ∈ 𝐴) |
33 | 21, 32 | eqeltrd 2850 | 1 ⊢ (𝜑 → ((𝑄 ⊕ 𝑅) ∩ 𝑈) ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1631 ∈ wcel 2145 ≠ wne 2943 ∩ cin 3722 ⊆ wss 3723 class class class wbr 4787 ‘cfv 6030 (class class class)co 6796 Basecbs 16064 SubGrpcsubg 17796 LSSumclsm 18256 Abelcabl 18401 LModclmod 19073 LSubSpclss 19142 LVecclvec 19315 LSAtomsclsa 34783 ⋖L clcv 34827 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-cnex 10198 ax-resscn 10199 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-addrcl 10203 ax-mulcl 10204 ax-mulrcl 10205 ax-mulcom 10206 ax-addass 10207 ax-mulass 10208 ax-distr 10209 ax-i2m1 10210 ax-1ne0 10211 ax-1rid 10212 ax-rnegex 10213 ax-rrecex 10214 ax-cnre 10215 ax-pre-lttri 10216 ax-pre-lttrn 10217 ax-pre-ltadd 10218 ax-pre-mulgt0 10219 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-int 4613 df-iun 4657 df-iin 4658 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-riota 6757 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-om 7217 df-1st 7319 df-2nd 7320 df-tpos 7508 df-wrecs 7563 df-recs 7625 df-rdg 7663 df-1o 7717 df-oadd 7721 df-er 7900 df-en 8114 df-dom 8115 df-sdom 8116 df-fin 8117 df-pnf 10282 df-mnf 10283 df-xr 10284 df-ltxr 10285 df-le 10286 df-sub 10474 df-neg 10475 df-nn 11227 df-2 11285 df-3 11286 df-ndx 16067 df-slot 16068 df-base 16070 df-sets 16071 df-ress 16072 df-plusg 16162 df-mulr 16163 df-0g 16310 df-mre 16454 df-mrc 16455 df-acs 16457 df-mgm 17450 df-sgrp 17492 df-mnd 17503 df-submnd 17544 df-grp 17633 df-minusg 17634 df-sbg 17635 df-subg 17799 df-cntz 17957 df-oppg 17983 df-lsm 18258 df-cmn 18402 df-abl 18403 df-mgp 18698 df-ur 18710 df-ring 18757 df-oppr 18831 df-dvdsr 18849 df-unit 18850 df-invr 18880 df-drng 18959 df-lmod 19075 df-lss 19143 df-lsp 19185 df-lvec 19316 df-lsatoms 34785 df-lshyp 34786 df-lcv 34828 |
This theorem is referenced by: lshpat 34865 |
Copyright terms: Public domain | W3C validator |