Mathbox for Mario Carneiro < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  kur14lem8 Structured version   Visualization version   GIF version

Theorem kur14lem8 31494
 Description: Lemma for kur14 31497. Show that the set 𝑇 contains at most 14 elements. (It could be less if some of the operators take the same value for a given set, but Kuratowski showed that this upper bound of 14 is tight in the sense that there exist topological spaces and subsets of these spaces for which all 14 generated sets are distinct, and indeed the real numbers form such a topological space.) (Contributed by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
kur14lem.j 𝐽 ∈ Top
kur14lem.x 𝑋 = 𝐽
kur14lem.k 𝐾 = (cls‘𝐽)
kur14lem.i 𝐼 = (int‘𝐽)
kur14lem.a 𝐴𝑋
kur14lem.b 𝐵 = (𝑋 ∖ (𝐾𝐴))
kur14lem.c 𝐶 = (𝐾‘(𝑋𝐴))
kur14lem.d 𝐷 = (𝐼‘(𝐾𝐴))
kur14lem.t 𝑇 = ((({𝐴, (𝑋𝐴), (𝐾𝐴)} ∪ {𝐵, 𝐶, (𝐼𝐴)}) ∪ {(𝐾𝐵), 𝐷, (𝐾‘(𝐼𝐴))}) ∪ ({(𝐼𝐶), (𝐾𝐷), (𝐼‘(𝐾𝐵))} ∪ {(𝐾‘(𝐼𝐶)), (𝐼‘(𝐾‘(𝐼𝐴)))}))
Assertion
Ref Expression
kur14lem8 (𝑇 ∈ Fin ∧ (♯‘𝑇) ≤ 14)

Proof of Theorem kur14lem8
StepHypRef Expression
1 kur14lem.t . 2 𝑇 = ((({𝐴, (𝑋𝐴), (𝐾𝐴)} ∪ {𝐵, 𝐶, (𝐼𝐴)}) ∪ {(𝐾𝐵), 𝐷, (𝐾‘(𝐼𝐴))}) ∪ ({(𝐼𝐶), (𝐾𝐷), (𝐼‘(𝐾𝐵))} ∪ {(𝐾‘(𝐼𝐶)), (𝐼‘(𝐾‘(𝐼𝐴)))}))
2 eqid 2752 . . 3 (({𝐴, (𝑋𝐴), (𝐾𝐴)} ∪ {𝐵, 𝐶, (𝐼𝐴)}) ∪ {(𝐾𝐵), 𝐷, (𝐾‘(𝐼𝐴))}) = (({𝐴, (𝑋𝐴), (𝐾𝐴)} ∪ {𝐵, 𝐶, (𝐼𝐴)}) ∪ {(𝐾𝐵), 𝐷, (𝐾‘(𝐼𝐴))})
3 eqid 2752 . . . 4 ({𝐴, (𝑋𝐴), (𝐾𝐴)} ∪ {𝐵, 𝐶, (𝐼𝐴)}) = ({𝐴, (𝑋𝐴), (𝐾𝐴)} ∪ {𝐵, 𝐶, (𝐼𝐴)})
4 hashtplei 13450 . . . 4 ({𝐴, (𝑋𝐴), (𝐾𝐴)} ∈ Fin ∧ (♯‘{𝐴, (𝑋𝐴), (𝐾𝐴)}) ≤ 3)
5 hashtplei 13450 . . . 4 ({𝐵, 𝐶, (𝐼𝐴)} ∈ Fin ∧ (♯‘{𝐵, 𝐶, (𝐼𝐴)}) ≤ 3)
6 3nn0 11494 . . . 4 3 ∈ ℕ0
7 3p3e6 11345 . . . 4 (3 + 3) = 6
83, 4, 5, 6, 6, 7hashunlei 13396 . . 3 (({𝐴, (𝑋𝐴), (𝐾𝐴)} ∪ {𝐵, 𝐶, (𝐼𝐴)}) ∈ Fin ∧ (♯‘({𝐴, (𝑋𝐴), (𝐾𝐴)} ∪ {𝐵, 𝐶, (𝐼𝐴)})) ≤ 6)
9 hashtplei 13450 . . 3 ({(𝐾𝐵), 𝐷, (𝐾‘(𝐼𝐴))} ∈ Fin ∧ (♯‘{(𝐾𝐵), 𝐷, (𝐾‘(𝐼𝐴))}) ≤ 3)
10 6nn0 11497 . . 3 6 ∈ ℕ0
11 6p3e9 11354 . . 3 (6 + 3) = 9
122, 8, 9, 10, 6, 11hashunlei 13396 . 2 ((({𝐴, (𝑋𝐴), (𝐾𝐴)} ∪ {𝐵, 𝐶, (𝐼𝐴)}) ∪ {(𝐾𝐵), 𝐷, (𝐾‘(𝐼𝐴))}) ∈ Fin ∧ (♯‘(({𝐴, (𝑋𝐴), (𝐾𝐴)} ∪ {𝐵, 𝐶, (𝐼𝐴)}) ∪ {(𝐾𝐵), 𝐷, (𝐾‘(𝐼𝐴))})) ≤ 9)
13 eqid 2752 . . 3 ({(𝐼𝐶), (𝐾𝐷), (𝐼‘(𝐾𝐵))} ∪ {(𝐾‘(𝐼𝐶)), (𝐼‘(𝐾‘(𝐼𝐴)))}) = ({(𝐼𝐶), (𝐾𝐷), (𝐼‘(𝐾𝐵))} ∪ {(𝐾‘(𝐼𝐶)), (𝐼‘(𝐾‘(𝐼𝐴)))})
14 hashtplei 13450 . . 3 ({(𝐼𝐶), (𝐾𝐷), (𝐼‘(𝐾𝐵))} ∈ Fin ∧ (♯‘{(𝐼𝐶), (𝐾𝐷), (𝐼‘(𝐾𝐵))}) ≤ 3)
15 hashprlei 13434 . . 3 ({(𝐾‘(𝐼𝐶)), (𝐼‘(𝐾‘(𝐼𝐴)))} ∈ Fin ∧ (♯‘{(𝐾‘(𝐼𝐶)), (𝐼‘(𝐾‘(𝐼𝐴)))}) ≤ 2)
16 2nn0 11493 . . 3 2 ∈ ℕ0
17 3p2e5 11344 . . 3 (3 + 2) = 5
1813, 14, 15, 6, 16, 17hashunlei 13396 . 2 (({(𝐼𝐶), (𝐾𝐷), (𝐼‘(𝐾𝐵))} ∪ {(𝐾‘(𝐼𝐶)), (𝐼‘(𝐾‘(𝐼𝐴)))}) ∈ Fin ∧ (♯‘({(𝐼𝐶), (𝐾𝐷), (𝐼‘(𝐾𝐵))} ∪ {(𝐾‘(𝐼𝐶)), (𝐼‘(𝐾‘(𝐼𝐴)))})) ≤ 5)
19 9nn0 11500 . 2 9 ∈ ℕ0
20 5nn0 11496 . 2 5 ∈ ℕ0
21 9p5e14 11807 . 2 (9 + 5) = 14
221, 12, 18, 19, 20, 21hashunlei 13396 1 (𝑇 ∈ Fin ∧ (♯‘𝑇) ≤ 14)
 Colors of variables: wff setvar class Syntax hints:   ∧ wa 383   = wceq 1624   ∈ wcel 2131   ∖ cdif 3704   ∪ cun 3705   ⊆ wss 3707  {cpr 4315  {ctp 4317  ∪ cuni 4580   class class class wbr 4796  ‘cfv 6041  Fincfn 8113  1c1 10121   ≤ cle 10259  2c2 11254  3c3 11255  4c4 11256  5c5 11257  6c6 11258  9c9 11261  ;cdc 11677  ♯chash 13303  Topctop 20892  intcnt 21015  clsccl 21016 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-int 4620  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-om 7223  df-1st 7325  df-2nd 7326  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-1o 7721  df-oadd 7725  df-er 7903  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-card 8947  df-cda 9174  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-nn 11205  df-2 11263  df-3 11264  df-4 11265  df-5 11266  df-6 11267  df-7 11268  df-8 11269  df-9 11270  df-n0 11477  df-xnn0 11548  df-z 11562  df-dec 11678  df-uz 11872  df-fz 12512  df-hash 13304 This theorem is referenced by:  kur14lem9  31495
 Copyright terms: Public domain W3C validator