![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > kur14lem8 | Structured version Visualization version GIF version |
Description: Lemma for kur14 31497. Show that the set 𝑇 contains at most 14 elements. (It could be less if some of the operators take the same value for a given set, but Kuratowski showed that this upper bound of 14 is tight in the sense that there exist topological spaces and subsets of these spaces for which all 14 generated sets are distinct, and indeed the real numbers form such a topological space.) (Contributed by Mario Carneiro, 11-Feb-2015.) |
Ref | Expression |
---|---|
kur14lem.j | ⊢ 𝐽 ∈ Top |
kur14lem.x | ⊢ 𝑋 = ∪ 𝐽 |
kur14lem.k | ⊢ 𝐾 = (cls‘𝐽) |
kur14lem.i | ⊢ 𝐼 = (int‘𝐽) |
kur14lem.a | ⊢ 𝐴 ⊆ 𝑋 |
kur14lem.b | ⊢ 𝐵 = (𝑋 ∖ (𝐾‘𝐴)) |
kur14lem.c | ⊢ 𝐶 = (𝐾‘(𝑋 ∖ 𝐴)) |
kur14lem.d | ⊢ 𝐷 = (𝐼‘(𝐾‘𝐴)) |
kur14lem.t | ⊢ 𝑇 = ((({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) ∪ {(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))}) ∪ ({(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))} ∪ {(𝐾‘(𝐼‘𝐶)), (𝐼‘(𝐾‘(𝐼‘𝐴)))})) |
Ref | Expression |
---|---|
kur14lem8 | ⊢ (𝑇 ∈ Fin ∧ (♯‘𝑇) ≤ ;14) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | kur14lem.t | . 2 ⊢ 𝑇 = ((({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) ∪ {(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))}) ∪ ({(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))} ∪ {(𝐾‘(𝐼‘𝐶)), (𝐼‘(𝐾‘(𝐼‘𝐴)))})) | |
2 | eqid 2752 | . . 3 ⊢ (({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) ∪ {(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))}) = (({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) ∪ {(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))}) | |
3 | eqid 2752 | . . . 4 ⊢ ({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) = ({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) | |
4 | hashtplei 13450 | . . . 4 ⊢ ({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∈ Fin ∧ (♯‘{𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)}) ≤ 3) | |
5 | hashtplei 13450 | . . . 4 ⊢ ({𝐵, 𝐶, (𝐼‘𝐴)} ∈ Fin ∧ (♯‘{𝐵, 𝐶, (𝐼‘𝐴)}) ≤ 3) | |
6 | 3nn0 11494 | . . . 4 ⊢ 3 ∈ ℕ0 | |
7 | 3p3e6 11345 | . . . 4 ⊢ (3 + 3) = 6 | |
8 | 3, 4, 5, 6, 6, 7 | hashunlei 13396 | . . 3 ⊢ (({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) ∈ Fin ∧ (♯‘({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)})) ≤ 6) |
9 | hashtplei 13450 | . . 3 ⊢ ({(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))} ∈ Fin ∧ (♯‘{(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))}) ≤ 3) | |
10 | 6nn0 11497 | . . 3 ⊢ 6 ∈ ℕ0 | |
11 | 6p3e9 11354 | . . 3 ⊢ (6 + 3) = 9 | |
12 | 2, 8, 9, 10, 6, 11 | hashunlei 13396 | . 2 ⊢ ((({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) ∪ {(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))}) ∈ Fin ∧ (♯‘(({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) ∪ {(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))})) ≤ 9) |
13 | eqid 2752 | . . 3 ⊢ ({(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))} ∪ {(𝐾‘(𝐼‘𝐶)), (𝐼‘(𝐾‘(𝐼‘𝐴)))}) = ({(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))} ∪ {(𝐾‘(𝐼‘𝐶)), (𝐼‘(𝐾‘(𝐼‘𝐴)))}) | |
14 | hashtplei 13450 | . . 3 ⊢ ({(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))} ∈ Fin ∧ (♯‘{(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))}) ≤ 3) | |
15 | hashprlei 13434 | . . 3 ⊢ ({(𝐾‘(𝐼‘𝐶)), (𝐼‘(𝐾‘(𝐼‘𝐴)))} ∈ Fin ∧ (♯‘{(𝐾‘(𝐼‘𝐶)), (𝐼‘(𝐾‘(𝐼‘𝐴)))}) ≤ 2) | |
16 | 2nn0 11493 | . . 3 ⊢ 2 ∈ ℕ0 | |
17 | 3p2e5 11344 | . . 3 ⊢ (3 + 2) = 5 | |
18 | 13, 14, 15, 6, 16, 17 | hashunlei 13396 | . 2 ⊢ (({(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))} ∪ {(𝐾‘(𝐼‘𝐶)), (𝐼‘(𝐾‘(𝐼‘𝐴)))}) ∈ Fin ∧ (♯‘({(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))} ∪ {(𝐾‘(𝐼‘𝐶)), (𝐼‘(𝐾‘(𝐼‘𝐴)))})) ≤ 5) |
19 | 9nn0 11500 | . 2 ⊢ 9 ∈ ℕ0 | |
20 | 5nn0 11496 | . 2 ⊢ 5 ∈ ℕ0 | |
21 | 9p5e14 11807 | . 2 ⊢ (9 + 5) = ;14 | |
22 | 1, 12, 18, 19, 20, 21 | hashunlei 13396 | 1 ⊢ (𝑇 ∈ Fin ∧ (♯‘𝑇) ≤ ;14) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 383 = wceq 1624 ∈ wcel 2131 ∖ cdif 3704 ∪ cun 3705 ⊆ wss 3707 {cpr 4315 {ctp 4317 ∪ cuni 4580 class class class wbr 4796 ‘cfv 6041 Fincfn 8113 1c1 10121 ≤ cle 10259 2c2 11254 3c3 11255 4c4 11256 5c5 11257 6c6 11258 9c9 11261 ;cdc 11677 ♯chash 13303 Topctop 20892 intcnt 21015 clsccl 21016 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-rep 4915 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 ax-cnex 10176 ax-resscn 10177 ax-1cn 10178 ax-icn 10179 ax-addcl 10180 ax-addrcl 10181 ax-mulcl 10182 ax-mulrcl 10183 ax-mulcom 10184 ax-addass 10185 ax-mulass 10186 ax-distr 10187 ax-i2m1 10188 ax-1ne0 10189 ax-1rid 10190 ax-rnegex 10191 ax-rrecex 10192 ax-cnre 10193 ax-pre-lttri 10194 ax-pre-lttrn 10195 ax-pre-ltadd 10196 ax-pre-mulgt0 10197 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-nel 3028 df-ral 3047 df-rex 3048 df-reu 3049 df-rmo 3050 df-rab 3051 df-v 3334 df-sbc 3569 df-csb 3667 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-pss 3723 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-tp 4318 df-op 4320 df-uni 4581 df-int 4620 df-iun 4666 df-br 4797 df-opab 4857 df-mpt 4874 df-tr 4897 df-id 5166 df-eprel 5171 df-po 5179 df-so 5180 df-fr 5217 df-we 5219 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-pred 5833 df-ord 5879 df-on 5880 df-lim 5881 df-suc 5882 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-f1 6046 df-fo 6047 df-f1o 6048 df-fv 6049 df-riota 6766 df-ov 6808 df-oprab 6809 df-mpt2 6810 df-om 7223 df-1st 7325 df-2nd 7326 df-wrecs 7568 df-recs 7629 df-rdg 7667 df-1o 7721 df-oadd 7725 df-er 7903 df-en 8114 df-dom 8115 df-sdom 8116 df-fin 8117 df-card 8947 df-cda 9174 df-pnf 10260 df-mnf 10261 df-xr 10262 df-ltxr 10263 df-le 10264 df-sub 10452 df-neg 10453 df-nn 11205 df-2 11263 df-3 11264 df-4 11265 df-5 11266 df-6 11267 df-7 11268 df-8 11269 df-9 11270 df-n0 11477 df-xnn0 11548 df-z 11562 df-dec 11678 df-uz 11872 df-fz 12512 df-hash 13304 |
This theorem is referenced by: kur14lem9 31495 |
Copyright terms: Public domain | W3C validator |