MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqval Structured version   Visualization version   GIF version

Theorem kqval 21749
Description: Value of the quotient topology function. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
Assertion
Ref Expression
kqval (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) = (𝐽 qTop 𝐹))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem kqval
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 topontop 20937 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
2 id 22 . . . . 5 (𝑗 = 𝐽𝑗 = 𝐽)
3 unieq 4580 . . . . . 6 (𝑗 = 𝐽 𝑗 = 𝐽)
4 rabeq 3341 . . . . . 6 (𝑗 = 𝐽 → {𝑦𝑗𝑥𝑦} = {𝑦𝐽𝑥𝑦})
53, 4mpteq12dv 4865 . . . . 5 (𝑗 = 𝐽 → (𝑥 𝑗 ↦ {𝑦𝑗𝑥𝑦}) = (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦}))
62, 5oveq12d 6810 . . . 4 (𝑗 = 𝐽 → (𝑗 qTop (𝑥 𝑗 ↦ {𝑦𝑗𝑥𝑦})) = (𝐽 qTop (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦})))
7 df-kq 21717 . . . 4 KQ = (𝑗 ∈ Top ↦ (𝑗 qTop (𝑥 𝑗 ↦ {𝑦𝑗𝑥𝑦})))
8 ovex 6822 . . . 4 (𝐽 qTop (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦})) ∈ V
96, 7, 8fvmpt 6424 . . 3 (𝐽 ∈ Top → (KQ‘𝐽) = (𝐽 qTop (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦})))
101, 9syl 17 . 2 (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) = (𝐽 qTop (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦})))
11 kqval.2 . . . 4 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
12 toponuni 20938 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
1312mpteq1d 4870 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦}) = (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦}))
1411, 13syl5eq 2816 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝐹 = (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦}))
1514oveq2d 6808 . 2 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 qTop 𝐹) = (𝐽 qTop (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦})))
1610, 15eqtr4d 2807 1 (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) = (𝐽 qTop 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1630  wcel 2144  {crab 3064   cuni 4572  cmpt 4861  cfv 6031  (class class class)co 6792   qTop cqtop 16370  Topctop 20917  TopOnctopon 20934  KQckq 21716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-ral 3065  df-rex 3066  df-rab 3069  df-v 3351  df-sbc 3586  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-br 4785  df-opab 4845  df-mpt 4862  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-iota 5994  df-fun 6033  df-fv 6039  df-ov 6795  df-topon 20935  df-kq 21717
This theorem is referenced by:  kqtopon  21750  kqid  21751  kqopn  21757  kqcld  21758  t0kq  21841
  Copyright terms: Public domain W3C validator