![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > kqsat | Structured version Visualization version GIF version |
Description: Any open set is saturated with respect to the topological indistinguishability map (in the terminology of qtoprest 21741). (Contributed by Mario Carneiro, 25-Aug-2015.) |
Ref | Expression |
---|---|
kqval.2 | ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) |
Ref | Expression |
---|---|
kqsat | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → (◡𝐹 “ (𝐹 “ 𝑈)) = 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | kqval.2 | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) | |
2 | 1 | kqffn 21749 | . . . . . 6 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐹 Fn 𝑋) |
3 | elpreima 6482 | . . . . . 6 ⊢ (𝐹 Fn 𝑋 → (𝑧 ∈ (◡𝐹 “ (𝐹 “ 𝑈)) ↔ (𝑧 ∈ 𝑋 ∧ (𝐹‘𝑧) ∈ (𝐹 “ 𝑈)))) | |
4 | 2, 3 | syl 17 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝑧 ∈ (◡𝐹 “ (𝐹 “ 𝑈)) ↔ (𝑧 ∈ 𝑋 ∧ (𝐹‘𝑧) ∈ (𝐹 “ 𝑈)))) |
5 | 4 | adantr 466 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → (𝑧 ∈ (◡𝐹 “ (𝐹 “ 𝑈)) ↔ (𝑧 ∈ 𝑋 ∧ (𝐹‘𝑧) ∈ (𝐹 “ 𝑈)))) |
6 | 1 | kqfvima 21754 | . . . . . . 7 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽 ∧ 𝑧 ∈ 𝑋) → (𝑧 ∈ 𝑈 ↔ (𝐹‘𝑧) ∈ (𝐹 “ 𝑈))) |
7 | 6 | 3expa 1111 | . . . . . 6 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) ∧ 𝑧 ∈ 𝑋) → (𝑧 ∈ 𝑈 ↔ (𝐹‘𝑧) ∈ (𝐹 “ 𝑈))) |
8 | 7 | biimprd 238 | . . . . 5 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) ∧ 𝑧 ∈ 𝑋) → ((𝐹‘𝑧) ∈ (𝐹 “ 𝑈) → 𝑧 ∈ 𝑈)) |
9 | 8 | expimpd 441 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → ((𝑧 ∈ 𝑋 ∧ (𝐹‘𝑧) ∈ (𝐹 “ 𝑈)) → 𝑧 ∈ 𝑈)) |
10 | 5, 9 | sylbid 230 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → (𝑧 ∈ (◡𝐹 “ (𝐹 “ 𝑈)) → 𝑧 ∈ 𝑈)) |
11 | 10 | ssrdv 3758 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → (◡𝐹 “ (𝐹 “ 𝑈)) ⊆ 𝑈) |
12 | toponss 20952 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → 𝑈 ⊆ 𝑋) | |
13 | fndm 6129 | . . . . . . 7 ⊢ (𝐹 Fn 𝑋 → dom 𝐹 = 𝑋) | |
14 | 2, 13 | syl 17 | . . . . . 6 ⊢ (𝐽 ∈ (TopOn‘𝑋) → dom 𝐹 = 𝑋) |
15 | 14 | adantr 466 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → dom 𝐹 = 𝑋) |
16 | 12, 15 | sseqtr4d 3791 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → 𝑈 ⊆ dom 𝐹) |
17 | sseqin2 3968 | . . . 4 ⊢ (𝑈 ⊆ dom 𝐹 ↔ (dom 𝐹 ∩ 𝑈) = 𝑈) | |
18 | 16, 17 | sylib 208 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → (dom 𝐹 ∩ 𝑈) = 𝑈) |
19 | dminss 5687 | . . 3 ⊢ (dom 𝐹 ∩ 𝑈) ⊆ (◡𝐹 “ (𝐹 “ 𝑈)) | |
20 | 18, 19 | syl6eqssr 3805 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → 𝑈 ⊆ (◡𝐹 “ (𝐹 “ 𝑈))) |
21 | 11, 20 | eqssd 3769 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → (◡𝐹 “ (𝐹 “ 𝑈)) = 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 {crab 3065 ∩ cin 3722 ⊆ wss 3723 ↦ cmpt 4864 ◡ccnv 5249 dom cdm 5250 “ cima 5253 Fn wfn 6025 ‘cfv 6030 TopOnctopon 20935 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-br 4788 df-opab 4848 df-mpt 4865 df-id 5158 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-fv 6038 df-topon 20936 |
This theorem is referenced by: kqopn 21758 kqreglem2 21766 kqnrmlem2 21768 |
Copyright terms: Public domain | W3C validator |