![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > kqreg | Structured version Visualization version GIF version |
Description: The Kolmogorov quotient of a regular space is regular. By regr1 21775 it is also Hausdorff, so we can also say that a space is regular iff the Kolmogorov quotient is regular Hausdorff (T3). (Contributed by Mario Carneiro, 25-Aug-2015.) |
Ref | Expression |
---|---|
kqreg | ⊢ (𝐽 ∈ Reg ↔ (KQ‘𝐽) ∈ Reg) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | regtop 21359 | . . . 4 ⊢ (𝐽 ∈ Reg → 𝐽 ∈ Top) | |
2 | eqid 2760 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
3 | 2 | toptopon 20944 | . . . 4 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) |
4 | 1, 3 | sylib 208 | . . 3 ⊢ (𝐽 ∈ Reg → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
5 | eqid 2760 | . . . 4 ⊢ (𝑥 ∈ ∪ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) = (𝑥 ∈ ∪ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) | |
6 | 5 | kqreglem1 21766 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽) ∧ 𝐽 ∈ Reg) → (KQ‘𝐽) ∈ Reg) |
7 | 4, 6 | mpancom 706 | . 2 ⊢ (𝐽 ∈ Reg → (KQ‘𝐽) ∈ Reg) |
8 | regtop 21359 | . . . . 5 ⊢ ((KQ‘𝐽) ∈ Reg → (KQ‘𝐽) ∈ Top) | |
9 | kqtop 21770 | . . . . 5 ⊢ (𝐽 ∈ Top ↔ (KQ‘𝐽) ∈ Top) | |
10 | 8, 9 | sylibr 224 | . . . 4 ⊢ ((KQ‘𝐽) ∈ Reg → 𝐽 ∈ Top) |
11 | 10, 3 | sylib 208 | . . 3 ⊢ ((KQ‘𝐽) ∈ Reg → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
12 | 5 | kqreglem2 21767 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽) ∧ (KQ‘𝐽) ∈ Reg) → 𝐽 ∈ Reg) |
13 | 11, 12 | mpancom 706 | . 2 ⊢ ((KQ‘𝐽) ∈ Reg → 𝐽 ∈ Reg) |
14 | 7, 13 | impbii 199 | 1 ⊢ (𝐽 ∈ Reg ↔ (KQ‘𝐽) ∈ Reg) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∈ wcel 2139 {crab 3054 ∪ cuni 4588 ↦ cmpt 4881 ‘cfv 6049 Topctop 20920 TopOnctopon 20937 Regcreg 21335 KQckq 21718 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-iin 4675 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-map 8027 df-qtop 16389 df-top 20921 df-topon 20938 df-cld 21045 df-cls 21047 df-cn 21253 df-reg 21342 df-kq 21719 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |