![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > kqopn | Structured version Visualization version GIF version |
Description: The topological indistinguishability map is an open map. (Contributed by Mario Carneiro, 25-Aug-2015.) |
Ref | Expression |
---|---|
kqval.2 | ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) |
Ref | Expression |
---|---|
kqopn | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → (𝐹 “ 𝑈) ∈ (KQ‘𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imassrn 5635 | . . . 4 ⊢ (𝐹 “ 𝑈) ⊆ ran 𝐹 | |
2 | 1 | a1i 11 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → (𝐹 “ 𝑈) ⊆ ran 𝐹) |
3 | kqval.2 | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) | |
4 | 3 | kqsat 21736 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → (◡𝐹 “ (𝐹 “ 𝑈)) = 𝑈) |
5 | simpr 479 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → 𝑈 ∈ 𝐽) | |
6 | 4, 5 | eqeltrd 2839 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → (◡𝐹 “ (𝐹 “ 𝑈)) ∈ 𝐽) |
7 | 3 | kqffn 21730 | . . . . . 6 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐹 Fn 𝑋) |
8 | dffn4 6282 | . . . . . 6 ⊢ (𝐹 Fn 𝑋 ↔ 𝐹:𝑋–onto→ran 𝐹) | |
9 | 7, 8 | sylib 208 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐹:𝑋–onto→ran 𝐹) |
10 | 9 | adantr 472 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → 𝐹:𝑋–onto→ran 𝐹) |
11 | elqtop3 21708 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→ran 𝐹) → ((𝐹 “ 𝑈) ∈ (𝐽 qTop 𝐹) ↔ ((𝐹 “ 𝑈) ⊆ ran 𝐹 ∧ (◡𝐹 “ (𝐹 “ 𝑈)) ∈ 𝐽))) | |
12 | 10, 11 | syldan 488 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → ((𝐹 “ 𝑈) ∈ (𝐽 qTop 𝐹) ↔ ((𝐹 “ 𝑈) ⊆ ran 𝐹 ∧ (◡𝐹 “ (𝐹 “ 𝑈)) ∈ 𝐽))) |
13 | 2, 6, 12 | mpbir2and 995 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → (𝐹 “ 𝑈) ∈ (𝐽 qTop 𝐹)) |
14 | 3 | kqval 21731 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) = (𝐽 qTop 𝐹)) |
15 | 14 | adantr 472 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → (KQ‘𝐽) = (𝐽 qTop 𝐹)) |
16 | 13, 15 | eleqtrrd 2842 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → (𝐹 “ 𝑈) ∈ (KQ‘𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2139 {crab 3054 ⊆ wss 3715 ↦ cmpt 4881 ◡ccnv 5265 ran crn 5267 “ cima 5269 Fn wfn 6044 –onto→wfo 6047 ‘cfv 6049 (class class class)co 6813 qTop cqtop 16365 TopOnctopon 20917 KQckq 21698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-qtop 16369 df-topon 20918 df-kq 21699 |
This theorem is referenced by: kqt0lem 21741 isr0 21742 regr1lem 21744 kqreglem1 21746 kqreglem2 21747 kqnrmlem1 21748 kqnrmlem2 21749 |
Copyright terms: Public domain | W3C validator |