![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > kqf | Structured version Visualization version GIF version |
Description: The Kolmogorov quotient is a topology on the quotient set. (Contributed by Mario Carneiro, 25-Aug-2015.) |
Ref | Expression |
---|---|
kqf | ⊢ KQ:Top⟶Kol2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex 6823 | . . 3 ⊢ (𝑗 qTop (𝑥 ∈ ∪ 𝑗 ↦ {𝑦 ∈ 𝑗 ∣ 𝑥 ∈ 𝑦})) ∈ V | |
2 | df-kq 21718 | . . 3 ⊢ KQ = (𝑗 ∈ Top ↦ (𝑗 qTop (𝑥 ∈ ∪ 𝑗 ↦ {𝑦 ∈ 𝑗 ∣ 𝑥 ∈ 𝑦}))) | |
3 | 1, 2 | fnmpti 6162 | . 2 ⊢ KQ Fn Top |
4 | kqt0 21770 | . . . 4 ⊢ (𝑥 ∈ Top ↔ (KQ‘𝑥) ∈ Kol2) | |
5 | 4 | biimpi 206 | . . 3 ⊢ (𝑥 ∈ Top → (KQ‘𝑥) ∈ Kol2) |
6 | 5 | rgen 3071 | . 2 ⊢ ∀𝑥 ∈ Top (KQ‘𝑥) ∈ Kol2 |
7 | ffnfv 6530 | . 2 ⊢ (KQ:Top⟶Kol2 ↔ (KQ Fn Top ∧ ∀𝑥 ∈ Top (KQ‘𝑥) ∈ Kol2)) | |
8 | 3, 6, 7 | mpbir2an 690 | 1 ⊢ KQ:Top⟶Kol2 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2145 ∀wral 3061 {crab 3065 ∪ cuni 4574 ↦ cmpt 4863 Fn wfn 6026 ⟶wf 6027 ‘cfv 6031 (class class class)co 6793 qTop cqtop 16371 Topctop 20918 Kol2ct0 21331 KQckq 21717 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-qtop 16375 df-top 20919 df-topon 20936 df-t0 21338 df-kq 21718 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |