![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > kqcld | Structured version Visualization version GIF version |
Description: The topological indistinguishability map is a closed map. (Contributed by Mario Carneiro, 25-Aug-2015.) |
Ref | Expression |
---|---|
kqval.2 | ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) |
Ref | Expression |
---|---|
kqcld | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → (𝐹 “ 𝑈) ∈ (Clsd‘(KQ‘𝐽))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imassrn 5623 | . . . 4 ⊢ (𝐹 “ 𝑈) ⊆ ran 𝐹 | |
2 | 1 | a1i 11 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → (𝐹 “ 𝑈) ⊆ ran 𝐹) |
3 | kqval.2 | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) | |
4 | 3 | kqcldsat 21709 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → (◡𝐹 “ (𝐹 “ 𝑈)) = 𝑈) |
5 | simpr 479 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → 𝑈 ∈ (Clsd‘𝐽)) | |
6 | 4, 5 | eqeltrd 2827 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → (◡𝐹 “ (𝐹 “ 𝑈)) ∈ (Clsd‘𝐽)) |
7 | 3 | kqffn 21701 | . . . . . 6 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐹 Fn 𝑋) |
8 | dffn4 6270 | . . . . . 6 ⊢ (𝐹 Fn 𝑋 ↔ 𝐹:𝑋–onto→ran 𝐹) | |
9 | 7, 8 | sylib 208 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐹:𝑋–onto→ran 𝐹) |
10 | qtopcld 21689 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→ran 𝐹) → ((𝐹 “ 𝑈) ∈ (Clsd‘(𝐽 qTop 𝐹)) ↔ ((𝐹 “ 𝑈) ⊆ ran 𝐹 ∧ (◡𝐹 “ (𝐹 “ 𝑈)) ∈ (Clsd‘𝐽)))) | |
11 | 9, 10 | mpdan 705 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) → ((𝐹 “ 𝑈) ∈ (Clsd‘(𝐽 qTop 𝐹)) ↔ ((𝐹 “ 𝑈) ⊆ ran 𝐹 ∧ (◡𝐹 “ (𝐹 “ 𝑈)) ∈ (Clsd‘𝐽)))) |
12 | 11 | adantr 472 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → ((𝐹 “ 𝑈) ∈ (Clsd‘(𝐽 qTop 𝐹)) ↔ ((𝐹 “ 𝑈) ⊆ ran 𝐹 ∧ (◡𝐹 “ (𝐹 “ 𝑈)) ∈ (Clsd‘𝐽)))) |
13 | 2, 6, 12 | mpbir2and 995 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → (𝐹 “ 𝑈) ∈ (Clsd‘(𝐽 qTop 𝐹))) |
14 | 3 | kqval 21702 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) = (𝐽 qTop 𝐹)) |
15 | 14 | adantr 472 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → (KQ‘𝐽) = (𝐽 qTop 𝐹)) |
16 | 15 | fveq2d 6344 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → (Clsd‘(KQ‘𝐽)) = (Clsd‘(𝐽 qTop 𝐹))) |
17 | 13, 16 | eleqtrrd 2830 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → (𝐹 “ 𝑈) ∈ (Clsd‘(KQ‘𝐽))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1620 ∈ wcel 2127 {crab 3042 ⊆ wss 3703 ↦ cmpt 4869 ◡ccnv 5253 ran crn 5255 “ cima 5257 Fn wfn 6032 –onto→wfo 6035 ‘cfv 6037 (class class class)co 6801 qTop cqtop 16336 TopOnctopon 20888 Clsdccld 20993 KQckq 21669 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-8 2129 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-rep 4911 ax-sep 4921 ax-nul 4929 ax-pow 4980 ax-pr 5043 ax-un 7102 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ne 2921 df-ral 3043 df-rex 3044 df-reu 3045 df-rab 3047 df-v 3330 df-sbc 3565 df-csb 3663 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-nul 4047 df-if 4219 df-pw 4292 df-sn 4310 df-pr 4312 df-op 4316 df-uni 4577 df-iun 4662 df-br 4793 df-opab 4853 df-mpt 4870 df-id 5162 df-xp 5260 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-rn 5265 df-res 5266 df-ima 5267 df-iota 6000 df-fun 6039 df-fn 6040 df-f 6041 df-f1 6042 df-fo 6043 df-f1o 6044 df-fv 6045 df-ov 6804 df-oprab 6805 df-mpt2 6806 df-qtop 16340 df-top 20872 df-topon 20889 df-cld 20996 df-kq 21670 |
This theorem is referenced by: kqreglem1 21717 kqnrmlem1 21719 kqnrmlem2 21720 |
Copyright terms: Public domain | W3C validator |