Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  konigsberglem4 Structured version   Visualization version   GIF version

Theorem konigsberglem4 27233
 Description: Lemma 4 for konigsberg 27235: Vertices 0, 1, 3 are vertices of odd degree. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 28-Feb-2021.)
Hypotheses
Ref Expression
konigsberg.v 𝑉 = (0...3)
konigsberg.e 𝐸 = ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩
konigsberg.g 𝐺 = ⟨𝑉, 𝐸
Assertion
Ref Expression
konigsberglem4 {0, 1, 3} ⊆ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}
Distinct variable groups:   𝑥,𝑉   𝑥,𝐺
Allowed substitution hint:   𝐸(𝑥)

Proof of Theorem konigsberglem4
StepHypRef Expression
1 3nn0 11348 . . . . . 6 3 ∈ ℕ0
2 0elfz 12475 . . . . . 6 (3 ∈ ℕ0 → 0 ∈ (0...3))
31, 2ax-mp 5 . . . . 5 0 ∈ (0...3)
4 konigsberg.v . . . . 5 𝑉 = (0...3)
53, 4eleqtrri 2729 . . . 4 0 ∈ 𝑉
6 n2dvds3 15154 . . . . 5 ¬ 2 ∥ 3
7 konigsberg.e . . . . . . 7 𝐸 = ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩
8 konigsberg.g . . . . . . 7 𝐺 = ⟨𝑉, 𝐸
94, 7, 8konigsberglem1 27230 . . . . . 6 ((VtxDeg‘𝐺)‘0) = 3
109breq2i 4693 . . . . 5 (2 ∥ ((VtxDeg‘𝐺)‘0) ↔ 2 ∥ 3)
116, 10mtbir 312 . . . 4 ¬ 2 ∥ ((VtxDeg‘𝐺)‘0)
12 fveq2 6229 . . . . . . 7 (𝑥 = 0 → ((VtxDeg‘𝐺)‘𝑥) = ((VtxDeg‘𝐺)‘0))
1312breq2d 4697 . . . . . 6 (𝑥 = 0 → (2 ∥ ((VtxDeg‘𝐺)‘𝑥) ↔ 2 ∥ ((VtxDeg‘𝐺)‘0)))
1413notbid 307 . . . . 5 (𝑥 = 0 → (¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥) ↔ ¬ 2 ∥ ((VtxDeg‘𝐺)‘0)))
1514elrab 3396 . . . 4 (0 ∈ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} ↔ (0 ∈ 𝑉 ∧ ¬ 2 ∥ ((VtxDeg‘𝐺)‘0)))
165, 11, 15mpbir2an 975 . . 3 0 ∈ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}
17 1nn0 11346 . . . . . 6 1 ∈ ℕ0
18 1le3 11282 . . . . . 6 1 ≤ 3
19 elfz2nn0 12469 . . . . . 6 (1 ∈ (0...3) ↔ (1 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 1 ≤ 3))
2017, 1, 18, 19mpbir3an 1263 . . . . 5 1 ∈ (0...3)
2120, 4eleqtrri 2729 . . . 4 1 ∈ 𝑉
224, 7, 8konigsberglem2 27231 . . . . . 6 ((VtxDeg‘𝐺)‘1) = 3
2322breq2i 4693 . . . . 5 (2 ∥ ((VtxDeg‘𝐺)‘1) ↔ 2 ∥ 3)
246, 23mtbir 312 . . . 4 ¬ 2 ∥ ((VtxDeg‘𝐺)‘1)
25 fveq2 6229 . . . . . . 7 (𝑥 = 1 → ((VtxDeg‘𝐺)‘𝑥) = ((VtxDeg‘𝐺)‘1))
2625breq2d 4697 . . . . . 6 (𝑥 = 1 → (2 ∥ ((VtxDeg‘𝐺)‘𝑥) ↔ 2 ∥ ((VtxDeg‘𝐺)‘1)))
2726notbid 307 . . . . 5 (𝑥 = 1 → (¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥) ↔ ¬ 2 ∥ ((VtxDeg‘𝐺)‘1)))
2827elrab 3396 . . . 4 (1 ∈ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} ↔ (1 ∈ 𝑉 ∧ ¬ 2 ∥ ((VtxDeg‘𝐺)‘1)))
2921, 24, 28mpbir2an 975 . . 3 1 ∈ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}
30 3re 11132 . . . . . . 7 3 ∈ ℝ
3130leidi 10600 . . . . . 6 3 ≤ 3
32 elfz2nn0 12469 . . . . . 6 (3 ∈ (0...3) ↔ (3 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 3 ≤ 3))
331, 1, 31, 32mpbir3an 1263 . . . . 5 3 ∈ (0...3)
3433, 4eleqtrri 2729 . . . 4 3 ∈ 𝑉
354, 7, 8konigsberglem3 27232 . . . . . 6 ((VtxDeg‘𝐺)‘3) = 3
3635breq2i 4693 . . . . 5 (2 ∥ ((VtxDeg‘𝐺)‘3) ↔ 2 ∥ 3)
376, 36mtbir 312 . . . 4 ¬ 2 ∥ ((VtxDeg‘𝐺)‘3)
38 fveq2 6229 . . . . . . 7 (𝑥 = 3 → ((VtxDeg‘𝐺)‘𝑥) = ((VtxDeg‘𝐺)‘3))
3938breq2d 4697 . . . . . 6 (𝑥 = 3 → (2 ∥ ((VtxDeg‘𝐺)‘𝑥) ↔ 2 ∥ ((VtxDeg‘𝐺)‘3)))
4039notbid 307 . . . . 5 (𝑥 = 3 → (¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥) ↔ ¬ 2 ∥ ((VtxDeg‘𝐺)‘3)))
4140elrab 3396 . . . 4 (3 ∈ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} ↔ (3 ∈ 𝑉 ∧ ¬ 2 ∥ ((VtxDeg‘𝐺)‘3)))
4234, 37, 41mpbir2an 975 . . 3 3 ∈ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}
4316, 29, 423pm3.2i 1259 . 2 (0 ∈ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} ∧ 1 ∈ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} ∧ 3 ∈ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)})
44 c0ex 10072 . . 3 0 ∈ V
45 1ex 10073 . . 3 1 ∈ V
46 3ex 11134 . . 3 3 ∈ V
4744, 45, 46tpss 4400 . 2 ((0 ∈ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} ∧ 1 ∈ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} ∧ 3 ∈ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ↔ {0, 1, 3} ⊆ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)})
4843, 47mpbi 220 1 {0, 1, 3} ⊆ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030  {crab 2945   ⊆ wss 3607  {cpr 4212  {ctp 4214  ⟨cop 4216   class class class wbr 4685  ‘cfv 5926  (class class class)co 6690  0cc0 9974  1c1 9975   ≤ cle 10113  2c2 11108  3c3 11109  ℕ0cn0 11330  ...cfz 12364  ⟨“cs7 13637   ∥ cdvds 15027  VtxDegcvtxdg 26417 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-xnn0 11402  df-z 11416  df-uz 11726  df-xadd 11985  df-fz 12365  df-fzo 12505  df-hash 13158  df-word 13331  df-concat 13333  df-s1 13334  df-s2 13639  df-s3 13640  df-s4 13641  df-s5 13642  df-s6 13643  df-s7 13644  df-dvds 15028  df-vtx 25921  df-iedg 25922  df-vtxdg 26418 This theorem is referenced by:  konigsberglem5  27234
 Copyright terms: Public domain W3C validator