![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > konigsbergiedgw | Structured version Visualization version GIF version |
Description: The indexed edges of the Königsberg graph 𝐺 is a word over the pairs of vertices. (Contributed by AV, 28-Feb-2021.) |
Ref | Expression |
---|---|
konigsberg.v | ⊢ 𝑉 = (0...3) |
konigsberg.e | ⊢ 𝐸 = 〈“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”〉 |
konigsberg.g | ⊢ 𝐺 = 〈𝑉, 𝐸〉 |
Ref | Expression |
---|---|
konigsbergiedgw | ⊢ 𝐸 ∈ Word {𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 2} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3nn0 11348 | . . . . . . 7 ⊢ 3 ∈ ℕ0 | |
2 | 0elfz 12475 | . . . . . . 7 ⊢ (3 ∈ ℕ0 → 0 ∈ (0...3)) | |
3 | 1, 2 | ax-mp 5 | . . . . . 6 ⊢ 0 ∈ (0...3) |
4 | 1nn0 11346 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
5 | 1le3 11282 | . . . . . . 7 ⊢ 1 ≤ 3 | |
6 | elfz2nn0 12469 | . . . . . . 7 ⊢ (1 ∈ (0...3) ↔ (1 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 1 ≤ 3)) | |
7 | 4, 1, 5, 6 | mpbir3an 1263 | . . . . . 6 ⊢ 1 ∈ (0...3) |
8 | 0ne1 11126 | . . . . . 6 ⊢ 0 ≠ 1 | |
9 | 3, 7, 8 | umgrbi 26041 | . . . . 5 ⊢ {0, 1} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (#‘𝑥) = 2} |
10 | 9 | a1i 11 | . . . 4 ⊢ (⊤ → {0, 1} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (#‘𝑥) = 2}) |
11 | 2nn0 11347 | . . . . . . 7 ⊢ 2 ∈ ℕ0 | |
12 | 2re 11128 | . . . . . . . 8 ⊢ 2 ∈ ℝ | |
13 | 3re 11132 | . . . . . . . 8 ⊢ 3 ∈ ℝ | |
14 | 2lt3 11233 | . . . . . . . 8 ⊢ 2 < 3 | |
15 | 12, 13, 14 | ltleii 10198 | . . . . . . 7 ⊢ 2 ≤ 3 |
16 | elfz2nn0 12469 | . . . . . . 7 ⊢ (2 ∈ (0...3) ↔ (2 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 2 ≤ 3)) | |
17 | 11, 1, 15, 16 | mpbir3an 1263 | . . . . . 6 ⊢ 2 ∈ (0...3) |
18 | 0ne2 11277 | . . . . . 6 ⊢ 0 ≠ 2 | |
19 | 3, 17, 18 | umgrbi 26041 | . . . . 5 ⊢ {0, 2} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (#‘𝑥) = 2} |
20 | 19 | a1i 11 | . . . 4 ⊢ (⊤ → {0, 2} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (#‘𝑥) = 2}) |
21 | nn0fz0 12476 | . . . . . . 7 ⊢ (3 ∈ ℕ0 ↔ 3 ∈ (0...3)) | |
22 | 1, 21 | mpbi 220 | . . . . . 6 ⊢ 3 ∈ (0...3) |
23 | 3ne0 11153 | . . . . . . 7 ⊢ 3 ≠ 0 | |
24 | 23 | necomi 2877 | . . . . . 6 ⊢ 0 ≠ 3 |
25 | 3, 22, 24 | umgrbi 26041 | . . . . 5 ⊢ {0, 3} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (#‘𝑥) = 2} |
26 | 25 | a1i 11 | . . . 4 ⊢ (⊤ → {0, 3} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (#‘𝑥) = 2}) |
27 | 1ne2 11278 | . . . . . 6 ⊢ 1 ≠ 2 | |
28 | 7, 17, 27 | umgrbi 26041 | . . . . 5 ⊢ {1, 2} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (#‘𝑥) = 2} |
29 | 28 | a1i 11 | . . . 4 ⊢ (⊤ → {1, 2} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (#‘𝑥) = 2}) |
30 | 12, 14 | ltneii 10188 | . . . . . 6 ⊢ 2 ≠ 3 |
31 | 17, 22, 30 | umgrbi 26041 | . . . . 5 ⊢ {2, 3} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (#‘𝑥) = 2} |
32 | 31 | a1i 11 | . . . 4 ⊢ (⊤ → {2, 3} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (#‘𝑥) = 2}) |
33 | 10, 20, 26, 29, 29, 32, 32 | s7cld 13667 | . . 3 ⊢ (⊤ → 〈“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”〉 ∈ Word {𝑥 ∈ 𝒫 (0...3) ∣ (#‘𝑥) = 2}) |
34 | 33 | trud 1533 | . 2 ⊢ 〈“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”〉 ∈ Word {𝑥 ∈ 𝒫 (0...3) ∣ (#‘𝑥) = 2} |
35 | konigsberg.e | . 2 ⊢ 𝐸 = 〈“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”〉 | |
36 | konigsberg.v | . . . . 5 ⊢ 𝑉 = (0...3) | |
37 | 36 | pweqi 4195 | . . . 4 ⊢ 𝒫 𝑉 = 𝒫 (0...3) |
38 | rabeq 3223 | . . . 4 ⊢ (𝒫 𝑉 = 𝒫 (0...3) → {𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 2} = {𝑥 ∈ 𝒫 (0...3) ∣ (#‘𝑥) = 2}) | |
39 | 37, 38 | ax-mp 5 | . . 3 ⊢ {𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 2} = {𝑥 ∈ 𝒫 (0...3) ∣ (#‘𝑥) = 2} |
40 | 39 | wrdeqi 13360 | . 2 ⊢ Word {𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 2} = Word {𝑥 ∈ 𝒫 (0...3) ∣ (#‘𝑥) = 2} |
41 | 34, 35, 40 | 3eltr4i 2743 | 1 ⊢ 𝐸 ∈ Word {𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 2} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1523 ⊤wtru 1524 ∈ wcel 2030 {crab 2945 𝒫 cpw 4191 {cpr 4212 〈cop 4216 class class class wbr 4685 ‘cfv 5926 (class class class)co 6690 0cc0 9974 1c1 9975 ≤ cle 10113 2c2 11108 3c3 11109 ℕ0cn0 11330 ...cfz 12364 #chash 13157 Word cword 13323 〈“cs7 13637 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-oadd 7609 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-card 8803 df-cda 9028 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-3 11118 df-n0 11331 df-z 11416 df-uz 11726 df-fz 12365 df-fzo 12505 df-hash 13158 df-word 13331 df-concat 13333 df-s1 13334 df-s2 13639 df-s3 13640 df-s4 13641 df-s5 13642 df-s6 13643 df-s7 13644 |
This theorem is referenced by: konigsbergssiedgwpr 27227 konigsbergumgr 27229 |
Copyright terms: Public domain | W3C validator |