![]() |
Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > knoppndvlem8 | Structured version Visualization version GIF version |
Description: Lemma for knoppndv 32862. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
Ref | Expression |
---|---|
knoppndvlem8.t | ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) |
knoppndvlem8.f | ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) |
knoppndvlem8.a | ⊢ 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) |
knoppndvlem8.c | ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) |
knoppndvlem8.j | ⊢ (𝜑 → 𝐽 ∈ ℕ0) |
knoppndvlem8.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
knoppndvlem8.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
knoppndvlem8.1 | ⊢ (𝜑 → 2 ∥ 𝑀) |
Ref | Expression |
---|---|
knoppndvlem8 | ⊢ (𝜑 → ((𝐹‘𝐴)‘𝐽) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | knoppndvlem8.t | . . 3 ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) | |
2 | knoppndvlem8.f | . . 3 ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) | |
3 | knoppndvlem8.a | . . 3 ⊢ 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) | |
4 | knoppndvlem8.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ ℕ0) | |
5 | knoppndvlem8.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
6 | knoppndvlem8.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
7 | 1, 2, 3, 4, 5, 6 | knoppndvlem7 32846 | . 2 ⊢ (𝜑 → ((𝐹‘𝐴)‘𝐽) = ((𝐶↑𝐽) · (𝑇‘(𝑀 / 2)))) |
8 | knoppndvlem8.1 | . . . . 5 ⊢ (𝜑 → 2 ∥ 𝑀) | |
9 | 2z 11616 | . . . . . . . 8 ⊢ 2 ∈ ℤ | |
10 | 9 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 2 ∈ ℤ) |
11 | 2ne0 11319 | . . . . . . . 8 ⊢ 2 ≠ 0 | |
12 | 11 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 2 ≠ 0) |
13 | 10, 12, 5 | 3jca 1122 | . . . . . 6 ⊢ (𝜑 → (2 ∈ ℤ ∧ 2 ≠ 0 ∧ 𝑀 ∈ ℤ)) |
14 | dvdsval2 15192 | . . . . . 6 ⊢ ((2 ∈ ℤ ∧ 2 ≠ 0 ∧ 𝑀 ∈ ℤ) → (2 ∥ 𝑀 ↔ (𝑀 / 2) ∈ ℤ)) | |
15 | 13, 14 | syl 17 | . . . . 5 ⊢ (𝜑 → (2 ∥ 𝑀 ↔ (𝑀 / 2) ∈ ℤ)) |
16 | 8, 15 | mpbid 222 | . . . 4 ⊢ (𝜑 → (𝑀 / 2) ∈ ℤ) |
17 | 1, 16 | dnizeq0 32802 | . . 3 ⊢ (𝜑 → (𝑇‘(𝑀 / 2)) = 0) |
18 | 17 | oveq2d 6812 | . 2 ⊢ (𝜑 → ((𝐶↑𝐽) · (𝑇‘(𝑀 / 2))) = ((𝐶↑𝐽) · 0)) |
19 | knoppndvlem8.c | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) | |
20 | 19 | knoppndvlem3 32842 | . . . . . 6 ⊢ (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1)) |
21 | 20 | simpld 482 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
22 | 21 | recnd 10274 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
23 | 22, 4 | expcld 13215 | . . 3 ⊢ (𝜑 → (𝐶↑𝐽) ∈ ℂ) |
24 | 23 | mul01d 10441 | . 2 ⊢ (𝜑 → ((𝐶↑𝐽) · 0) = 0) |
25 | 7, 18, 24 | 3eqtrd 2809 | 1 ⊢ (𝜑 → ((𝐹‘𝐴)‘𝐽) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 ≠ wne 2943 class class class wbr 4787 ↦ cmpt 4864 ‘cfv 6030 (class class class)co 6796 ℝcr 10141 0cc0 10142 1c1 10143 + caddc 10145 · cmul 10147 < clt 10280 − cmin 10472 -cneg 10473 / cdiv 10890 ℕcn 11226 2c2 11276 ℕ0cn0 11499 ℤcz 11584 (,)cioo 12380 ⌊cfl 12799 ↑cexp 13067 abscabs 14182 ∥ cdvds 15189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-cnex 10198 ax-resscn 10199 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-addrcl 10203 ax-mulcl 10204 ax-mulrcl 10205 ax-mulcom 10206 ax-addass 10207 ax-mulass 10208 ax-distr 10209 ax-i2m1 10210 ax-1ne0 10211 ax-1rid 10212 ax-rnegex 10213 ax-rrecex 10214 ax-cnre 10215 ax-pre-lttri 10216 ax-pre-lttrn 10217 ax-pre-ltadd 10218 ax-pre-mulgt0 10219 ax-pre-sup 10220 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-riota 6757 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-om 7217 df-1st 7319 df-2nd 7320 df-wrecs 7563 df-recs 7625 df-rdg 7663 df-er 7900 df-en 8114 df-dom 8115 df-sdom 8116 df-sup 8508 df-inf 8509 df-pnf 10282 df-mnf 10283 df-xr 10284 df-ltxr 10285 df-le 10286 df-sub 10474 df-neg 10475 df-div 10891 df-nn 11227 df-2 11285 df-3 11286 df-n0 11500 df-z 11585 df-uz 11894 df-rp 12036 df-ioo 12384 df-ico 12386 df-fl 12801 df-seq 13009 df-exp 13068 df-cj 14047 df-re 14048 df-im 14049 df-sqrt 14183 df-abs 14184 df-dvds 15190 |
This theorem is referenced by: knoppndvlem10 32849 |
Copyright terms: Public domain | W3C validator |