Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem7 Structured version   Visualization version   GIF version

Theorem knoppndvlem7 32836
Description: Lemma for knoppndv 32852. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
Hypotheses
Ref Expression
knoppndvlem7.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppndvlem7.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppndvlem7.a 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)
knoppndvlem7.j (𝜑𝐽 ∈ ℕ0)
knoppndvlem7.m (𝜑𝑀 ∈ ℤ)
knoppndvlem7.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
knoppndvlem7 (𝜑 → ((𝐹𝐴)‘𝐽) = ((𝐶𝐽) · (𝑇‘(𝑀 / 2))))
Distinct variable groups:   𝐴,𝑛,𝑦   𝐶,𝑛,𝑦   𝑛,𝐽   𝑛,𝑁,𝑦   𝑇,𝑛,𝑦   𝜑,𝑛,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐶(𝑥)   𝑇(𝑥)   𝐹(𝑥,𝑦,𝑛)   𝐽(𝑥,𝑦)   𝑀(𝑥,𝑦,𝑛)   𝑁(𝑥)

Proof of Theorem knoppndvlem7
StepHypRef Expression
1 knoppndvlem7.f . . 3 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
2 knoppndvlem7.a . . . . 5 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)
32a1i 11 . . . 4 (𝜑𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀))
4 knoppndvlem7.n . . . . 5 (𝜑𝑁 ∈ ℕ)
5 knoppndvlem7.j . . . . . 6 (𝜑𝐽 ∈ ℕ0)
65nn0zd 11692 . . . . 5 (𝜑𝐽 ∈ ℤ)
7 knoppndvlem7.m . . . . 5 (𝜑𝑀 ∈ ℤ)
84, 6, 7knoppndvlem1 32830 . . . 4 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) ∈ ℝ)
93, 8eqeltrd 2839 . . 3 (𝜑𝐴 ∈ ℝ)
101, 9, 5knoppcnlem1 32810 . 2 (𝜑 → ((𝐹𝐴)‘𝐽) = ((𝐶𝐽) · (𝑇‘(((2 · 𝑁)↑𝐽) · 𝐴))))
112oveq2i 6825 . . . . . 6 (((2 · 𝑁)↑𝐽) · 𝐴) = (((2 · 𝑁)↑𝐽) · ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀))
1211a1i 11 . . . . 5 (𝜑 → (((2 · 𝑁)↑𝐽) · 𝐴) = (((2 · 𝑁)↑𝐽) · ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)))
13 2cnd 11305 . . . . . . . . . 10 (𝜑 → 2 ∈ ℂ)
14 nnz 11611 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
154, 14syl 17 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℤ)
1615zcnd 11695 . . . . . . . . . 10 (𝜑𝑁 ∈ ℂ)
1713, 16mulcld 10272 . . . . . . . . 9 (𝜑 → (2 · 𝑁) ∈ ℂ)
1817, 5expcld 13222 . . . . . . . 8 (𝜑 → ((2 · 𝑁)↑𝐽) ∈ ℂ)
19 2ne0 11325 . . . . . . . . . . . 12 2 ≠ 0
2019a1i 11 . . . . . . . . . . 11 (𝜑 → 2 ≠ 0)
21 0red 10253 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ℝ)
22 1red 10267 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℝ)
2315zred 11694 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℝ)
24 0lt1 10762 . . . . . . . . . . . . . . 15 0 < 1
2524a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 0 < 1)
26 nnge1 11258 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → 1 ≤ 𝑁)
274, 26syl 17 . . . . . . . . . . . . . 14 (𝜑 → 1 ≤ 𝑁)
2821, 22, 23, 25, 27ltletrd 10409 . . . . . . . . . . . . 13 (𝜑 → 0 < 𝑁)
2921, 28ltned 10385 . . . . . . . . . . . 12 (𝜑 → 0 ≠ 𝑁)
3029necomd 2987 . . . . . . . . . . 11 (𝜑𝑁 ≠ 0)
3113, 16, 20, 30mulne0d 10891 . . . . . . . . . 10 (𝜑 → (2 · 𝑁) ≠ 0)
326znegcld 11696 . . . . . . . . . 10 (𝜑 → -𝐽 ∈ ℤ)
3317, 31, 32expclzd 13227 . . . . . . . . 9 (𝜑 → ((2 · 𝑁)↑-𝐽) ∈ ℂ)
3433, 13, 20divcld 11013 . . . . . . . 8 (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) ∈ ℂ)
357zcnd 11695 . . . . . . . 8 (𝜑𝑀 ∈ ℂ)
3618, 34, 35mulassd 10275 . . . . . . 7 (𝜑 → ((((2 · 𝑁)↑𝐽) · (((2 · 𝑁)↑-𝐽) / 2)) · 𝑀) = (((2 · 𝑁)↑𝐽) · ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)))
3736eqcomd 2766 . . . . . 6 (𝜑 → (((2 · 𝑁)↑𝐽) · ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)) = ((((2 · 𝑁)↑𝐽) · (((2 · 𝑁)↑-𝐽) / 2)) · 𝑀))
3818, 33, 13, 20divassd 11048 . . . . . . . . 9 (𝜑 → ((((2 · 𝑁)↑𝐽) · ((2 · 𝑁)↑-𝐽)) / 2) = (((2 · 𝑁)↑𝐽) · (((2 · 𝑁)↑-𝐽) / 2)))
3938eqcomd 2766 . . . . . . . 8 (𝜑 → (((2 · 𝑁)↑𝐽) · (((2 · 𝑁)↑-𝐽) / 2)) = ((((2 · 𝑁)↑𝐽) · ((2 · 𝑁)↑-𝐽)) / 2))
4017, 31, 6expnegd 13229 . . . . . . . . . . 11 (𝜑 → ((2 · 𝑁)↑-𝐽) = (1 / ((2 · 𝑁)↑𝐽)))
4140oveq2d 6830 . . . . . . . . . 10 (𝜑 → (((2 · 𝑁)↑𝐽) · ((2 · 𝑁)↑-𝐽)) = (((2 · 𝑁)↑𝐽) · (1 / ((2 · 𝑁)↑𝐽))))
4217, 31, 6expne0d 13228 . . . . . . . . . . 11 (𝜑 → ((2 · 𝑁)↑𝐽) ≠ 0)
4318, 42recidd 11008 . . . . . . . . . 10 (𝜑 → (((2 · 𝑁)↑𝐽) · (1 / ((2 · 𝑁)↑𝐽))) = 1)
4441, 43eqtrd 2794 . . . . . . . . 9 (𝜑 → (((2 · 𝑁)↑𝐽) · ((2 · 𝑁)↑-𝐽)) = 1)
4544oveq1d 6829 . . . . . . . 8 (𝜑 → ((((2 · 𝑁)↑𝐽) · ((2 · 𝑁)↑-𝐽)) / 2) = (1 / 2))
4639, 45eqtrd 2794 . . . . . . 7 (𝜑 → (((2 · 𝑁)↑𝐽) · (((2 · 𝑁)↑-𝐽) / 2)) = (1 / 2))
4746oveq1d 6829 . . . . . 6 (𝜑 → ((((2 · 𝑁)↑𝐽) · (((2 · 𝑁)↑-𝐽) / 2)) · 𝑀) = ((1 / 2) · 𝑀))
4835, 13, 20divrec2d 11017 . . . . . . 7 (𝜑 → (𝑀 / 2) = ((1 / 2) · 𝑀))
4948eqcomd 2766 . . . . . 6 (𝜑 → ((1 / 2) · 𝑀) = (𝑀 / 2))
5037, 47, 493eqtrd 2798 . . . . 5 (𝜑 → (((2 · 𝑁)↑𝐽) · ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)) = (𝑀 / 2))
5112, 50eqtrd 2794 . . . 4 (𝜑 → (((2 · 𝑁)↑𝐽) · 𝐴) = (𝑀 / 2))
5251fveq2d 6357 . . 3 (𝜑 → (𝑇‘(((2 · 𝑁)↑𝐽) · 𝐴)) = (𝑇‘(𝑀 / 2)))
5352oveq2d 6830 . 2 (𝜑 → ((𝐶𝐽) · (𝑇‘(((2 · 𝑁)↑𝐽) · 𝐴))) = ((𝐶𝐽) · (𝑇‘(𝑀 / 2))))
5410, 53eqtrd 2794 1 (𝜑 → ((𝐹𝐴)‘𝐽) = ((𝐶𝐽) · (𝑇‘(𝑀 / 2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1632  wcel 2139  wne 2932   class class class wbr 4804  cmpt 4881  cfv 6049  (class class class)co 6814  cr 10147  0cc0 10148  1c1 10149   + caddc 10151   · cmul 10153   < clt 10286  cle 10287  cmin 10478  -cneg 10479   / cdiv 10896  cn 11232  2c2 11282  0cn0 11504  cz 11589  cfl 12805  cexp 13074  abscabs 14193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-n0 11505  df-z 11590  df-uz 11900  df-seq 13016  df-exp 13075
This theorem is referenced by:  knoppndvlem8  32837  knoppndvlem9  32838
  Copyright terms: Public domain W3C validator