Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem21 Structured version   Visualization version   GIF version

Theorem knoppndvlem21 32860
Description: Lemma for knoppndv 32862. (Contributed by Asger C. Ipsen, 18-Aug-2021.)
Hypotheses
Ref Expression
knoppndvlem21.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppndvlem21.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppndvlem21.w 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))
knoppndvlem21.g 𝐺 = (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))
knoppndvlem21.c (𝜑𝐶 ∈ (-1(,)1))
knoppndvlem21.d (𝜑𝐷 ∈ ℝ+)
knoppndvlem21.e (𝜑𝐸 ∈ ℝ+)
knoppndvlem21.h (𝜑𝐻 ∈ ℝ)
knoppndvlem21.j (𝜑𝐽 ∈ ℕ0)
knoppndvlem21.n (𝜑𝑁 ∈ ℕ)
knoppndvlem21.1 (𝜑 → 1 < (𝑁 · (abs‘𝐶)))
knoppndvlem21.2 (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) < 𝐷)
knoppndvlem21.3 (𝜑𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · 𝐺))
Assertion
Ref Expression
knoppndvlem21 (𝜑 → ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ ((𝑎𝐻𝐻𝑏) ∧ ((𝑏𝑎) < 𝐷𝑎𝑏) ∧ 𝐸 ≤ ((abs‘((𝑊𝑏) − (𝑊𝑎))) / (𝑏𝑎))))
Distinct variable groups:   𝐶,𝑖,𝑛,𝑦   𝐷,𝑎,𝑏   𝐸,𝑎,𝑏   𝑖,𝐹,𝑤   𝐻,𝑎,𝑏   𝐽,𝑎,𝑏   𝑖,𝐽,𝑛,𝑤,𝑦   𝑥,𝐽,𝑖,𝑤   𝑁,𝑎,𝑏   𝑖,𝑁,𝑛,𝑤,𝑦   𝑥,𝑁   𝑇,𝑛,𝑦   𝑊,𝑎,𝑏   𝜑,𝑖,𝑛,𝑤,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑎,𝑏)   𝐶(𝑥,𝑤,𝑎,𝑏)   𝐷(𝑥,𝑦,𝑤,𝑖,𝑛)   𝑇(𝑥,𝑤,𝑖,𝑎,𝑏)   𝐸(𝑥,𝑦,𝑤,𝑖,𝑛)   𝐹(𝑥,𝑦,𝑛,𝑎,𝑏)   𝐺(𝑥,𝑦,𝑤,𝑖,𝑛,𝑎,𝑏)   𝐻(𝑥,𝑦,𝑤,𝑖,𝑛)   𝑊(𝑥,𝑦,𝑤,𝑖,𝑛)

Proof of Theorem knoppndvlem21
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 eqid 2771 . . 3 ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)
2 eqid 2771 . . 3 ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))
3 knoppndvlem21.j . . 3 (𝜑𝐽 ∈ ℕ0)
4 knoppndvlem21.h . . 3 (𝜑𝐻 ∈ ℝ)
5 knoppndvlem21.n . . 3 (𝜑𝑁 ∈ ℕ)
61, 2, 3, 4, 5knoppndvlem19 32858 . 2 (𝜑 → ∃𝑚 ∈ ℤ (((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))))
7 2re 11292 . . . . . . . . . . 11 2 ∈ ℝ
87a1i 11 . . . . . . . . . 10 (𝜑 → 2 ∈ ℝ)
95nnred 11237 . . . . . . . . . 10 (𝜑𝑁 ∈ ℝ)
108, 9remulcld 10272 . . . . . . . . 9 (𝜑 → (2 · 𝑁) ∈ ℝ)
11 2pos 11314 . . . . . . . . . . . 12 0 < 2
1211a1i 11 . . . . . . . . . . 11 (𝜑 → 0 < 2)
135nngt0d 11266 . . . . . . . . . . 11 (𝜑 → 0 < 𝑁)
148, 9, 12, 13mulgt0d 10394 . . . . . . . . . 10 (𝜑 → 0 < (2 · 𝑁))
1514gt0ne0d 10794 . . . . . . . . 9 (𝜑 → (2 · 𝑁) ≠ 0)
163nn0zd 11682 . . . . . . . . . 10 (𝜑𝐽 ∈ ℤ)
1716znegcld 11686 . . . . . . . . 9 (𝜑 → -𝐽 ∈ ℤ)
1810, 15, 17reexpclzd 13241 . . . . . . . 8 (𝜑 → ((2 · 𝑁)↑-𝐽) ∈ ℝ)
1918rehalfcld 11481 . . . . . . 7 (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) ∈ ℝ)
2019adantr 466 . . . . . 6 ((𝜑𝑚 ∈ ℤ) → (((2 · 𝑁)↑-𝐽) / 2) ∈ ℝ)
21 simpr 471 . . . . . . 7 ((𝜑𝑚 ∈ ℤ) → 𝑚 ∈ ℤ)
2221zred 11684 . . . . . 6 ((𝜑𝑚 ∈ ℤ) → 𝑚 ∈ ℝ)
2320, 22remulcld 10272 . . . . 5 ((𝜑𝑚 ∈ ℤ) → ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ∈ ℝ)
2423adantrr 696 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ (((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))))) → ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ∈ ℝ)
25 peano2re 10411 . . . . . . . 8 (𝑚 ∈ ℝ → (𝑚 + 1) ∈ ℝ)
2622, 25syl 17 . . . . . . 7 ((𝜑𝑚 ∈ ℤ) → (𝑚 + 1) ∈ ℝ)
2720, 26jca 501 . . . . . 6 ((𝜑𝑚 ∈ ℤ) → ((((2 · 𝑁)↑-𝐽) / 2) ∈ ℝ ∧ (𝑚 + 1) ∈ ℝ))
28 remulcl 10223 . . . . . 6 (((((2 · 𝑁)↑-𝐽) / 2) ∈ ℝ ∧ (𝑚 + 1) ∈ ℝ) → ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) ∈ ℝ)
2927, 28syl 17 . . . . 5 ((𝜑𝑚 ∈ ℤ) → ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) ∈ ℝ)
3029adantrr 696 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ (((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))))) → ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) ∈ ℝ)
31 simprr 756 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ (((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))))) → (((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))))
323adantr 466 . . . . . . . . 9 ((𝜑𝑚 ∈ ℤ) → 𝐽 ∈ ℕ0)
335adantr 466 . . . . . . . . 9 ((𝜑𝑚 ∈ ℤ) → 𝑁 ∈ ℕ)
341, 2, 32, 21, 33knoppndvlem16 32855 . . . . . . . 8 ((𝜑𝑚 ∈ ℤ) → (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) = (((2 · 𝑁)↑-𝐽) / 2))
35 knoppndvlem21.2 . . . . . . . . 9 (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) < 𝐷)
3635adantr 466 . . . . . . . 8 ((𝜑𝑚 ∈ ℤ) → (((2 · 𝑁)↑-𝐽) / 2) < 𝐷)
3734, 36eqbrtrd 4808 . . . . . . 7 ((𝜑𝑚 ∈ ℤ) → (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) < 𝐷)
3810, 17, 143jca 1122 . . . . . . . . . . . . 13 (𝜑 → ((2 · 𝑁) ∈ ℝ ∧ -𝐽 ∈ ℤ ∧ 0 < (2 · 𝑁)))
39 expgt0 13100 . . . . . . . . . . . . 13 (((2 · 𝑁) ∈ ℝ ∧ -𝐽 ∈ ℤ ∧ 0 < (2 · 𝑁)) → 0 < ((2 · 𝑁)↑-𝐽))
4038, 39syl 17 . . . . . . . . . . . 12 (𝜑 → 0 < ((2 · 𝑁)↑-𝐽))
4118, 8, 40, 12divgt0d 11161 . . . . . . . . . . 11 (𝜑 → 0 < (((2 · 𝑁)↑-𝐽) / 2))
4241adantr 466 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℤ) → 0 < (((2 · 𝑁)↑-𝐽) / 2))
4334eqcomd 2777 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℤ) → (((2 · 𝑁)↑-𝐽) / 2) = (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))
4442, 43breqtrd 4812 . . . . . . . . 9 ((𝜑𝑚 ∈ ℤ) → 0 < (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))
4523, 29posdifd 10816 . . . . . . . . 9 ((𝜑𝑚 ∈ ℤ) → (((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) < ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) ↔ 0 < (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))))
4644, 45mpbird 247 . . . . . . . 8 ((𝜑𝑚 ∈ ℤ) → ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) < ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)))
4723, 46ltned 10375 . . . . . . 7 ((𝜑𝑚 ∈ ℤ) → ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≠ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)))
4837, 47jca 501 . . . . . 6 ((𝜑𝑚 ∈ ℤ) → ((((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) < 𝐷 ∧ ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≠ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))))
4948adantrr 696 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ (((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))))) → ((((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) < 𝐷 ∧ ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≠ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))))
50 knoppndvlem21.e . . . . . . . . 9 (𝜑𝐸 ∈ ℝ+)
5150rpred 12075 . . . . . . . 8 (𝜑𝐸 ∈ ℝ)
5251adantr 466 . . . . . . 7 ((𝜑𝑚 ∈ ℤ) → 𝐸 ∈ ℝ)
53 knoppndvlem21.c . . . . . . . . . . . . . . 15 (𝜑𝐶 ∈ (-1(,)1))
5453knoppndvlem3 32842 . . . . . . . . . . . . . 14 (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1))
5554simpld 482 . . . . . . . . . . . . 13 (𝜑𝐶 ∈ ℝ)
5655recnd 10270 . . . . . . . . . . . 12 (𝜑𝐶 ∈ ℂ)
5756abscld 14383 . . . . . . . . . . 11 (𝜑 → (abs‘𝐶) ∈ ℝ)
5810, 57remulcld 10272 . . . . . . . . . 10 (𝜑 → ((2 · 𝑁) · (abs‘𝐶)) ∈ ℝ)
5958, 3reexpcld 13232 . . . . . . . . 9 (𝜑 → (((2 · 𝑁) · (abs‘𝐶))↑𝐽) ∈ ℝ)
60 knoppndvlem21.g . . . . . . . . . . 11 𝐺 = (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))
6160a1i 11 . . . . . . . . . 10 (𝜑𝐺 = (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))
62 knoppndvlem21.1 . . . . . . . . . . . 12 (𝜑 → 1 < (𝑁 · (abs‘𝐶)))
6353, 5, 62knoppndvlem20 32859 . . . . . . . . . . 11 (𝜑 → (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) ∈ ℝ+)
6463rpred 12075 . . . . . . . . . 10 (𝜑 → (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) ∈ ℝ)
6561, 64eqeltrd 2850 . . . . . . . . 9 (𝜑𝐺 ∈ ℝ)
6659, 65remulcld 10272 . . . . . . . 8 (𝜑 → ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · 𝐺) ∈ ℝ)
6766adantr 466 . . . . . . 7 ((𝜑𝑚 ∈ ℤ) → ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · 𝐺) ∈ ℝ)
68 knoppndvlem21.t . . . . . . . . . . 11 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
69 knoppndvlem21.f . . . . . . . . . . 11 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
70 knoppndvlem21.w . . . . . . . . . . 11 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))
7155adantr 466 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℤ) → 𝐶 ∈ ℝ)
7254simprd 483 . . . . . . . . . . . 12 (𝜑 → (abs‘𝐶) < 1)
7372adantr 466 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℤ) → (abs‘𝐶) < 1)
7468, 69, 70, 29, 33, 71, 73knoppcld 32832 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℤ) → (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) ∈ ℂ)
7568, 69, 70, 23, 33, 71, 73knoppcld 32832 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℤ) → (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) ∈ ℂ)
7674, 75subcld 10594 . . . . . . . . 9 ((𝜑𝑚 ∈ ℤ) → ((𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))) ∈ ℂ)
7776abscld 14383 . . . . . . . 8 ((𝜑𝑚 ∈ ℤ) → (abs‘((𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) ∈ ℝ)
7834, 20eqeltrd 2850 . . . . . . . 8 ((𝜑𝑚 ∈ ℤ) → (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) ∈ ℝ)
7944gt0ne0d 10794 . . . . . . . 8 ((𝜑𝑚 ∈ ℤ) → (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) ≠ 0)
8077, 78, 79redivcld 11055 . . . . . . 7 ((𝜑𝑚 ∈ ℤ) → ((abs‘((𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))) ∈ ℝ)
81 knoppndvlem21.3 . . . . . . . 8 (𝜑𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · 𝐺))
8281adantr 466 . . . . . . 7 ((𝜑𝑚 ∈ ℤ) → 𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · 𝐺))
8360oveq2i 6804 . . . . . . . . 9 ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · 𝐺) = ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))
8483a1i 11 . . . . . . . 8 ((𝜑𝑚 ∈ ℤ) → ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · 𝐺) = ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))))
8553adantr 466 . . . . . . . . 9 ((𝜑𝑚 ∈ ℤ) → 𝐶 ∈ (-1(,)1))
8662adantr 466 . . . . . . . . 9 ((𝜑𝑚 ∈ ℤ) → 1 < (𝑁 · (abs‘𝐶)))
8768, 69, 70, 1, 2, 85, 32, 21, 33, 86knoppndvlem17 32856 . . . . . . . 8 ((𝜑𝑚 ∈ ℤ) → ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) ≤ ((abs‘((𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))))
8884, 87eqbrtrd 4808 . . . . . . 7 ((𝜑𝑚 ∈ ℤ) → ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · 𝐺) ≤ ((abs‘((𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))))
8952, 67, 80, 82, 88letrd 10396 . . . . . 6 ((𝜑𝑚 ∈ ℤ) → 𝐸 ≤ ((abs‘((𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))))
9089adantrr 696 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ (((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))))) → 𝐸 ≤ ((abs‘((𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))))
9131, 49, 903jca 1122 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ (((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))))) → ((((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) ∧ ((((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) < 𝐷 ∧ ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≠ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) ∧ 𝐸 ≤ ((abs‘((𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))))
9224, 30, 913jca 1122 . . 3 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ (((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))))) → (((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ∈ ℝ ∧ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) ∈ ℝ ∧ ((((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) ∧ ((((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) < 𝐷 ∧ ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≠ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) ∧ 𝐸 ≤ ((abs‘((𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))))))
93 breq1 4789 . . . . . 6 (𝑎 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) → (𝑎𝐻 ↔ ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻))
9493anbi1d 615 . . . . 5 (𝑎 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) → ((𝑎𝐻𝐻𝑏) ↔ (((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻𝑏)))
95 oveq2 6801 . . . . . . 7 (𝑎 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) → (𝑏𝑎) = (𝑏 − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))
9695breq1d 4796 . . . . . 6 (𝑎 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) → ((𝑏𝑎) < 𝐷 ↔ (𝑏 − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) < 𝐷))
97 neeq1 3005 . . . . . 6 (𝑎 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) → (𝑎𝑏 ↔ ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≠ 𝑏))
9896, 97anbi12d 616 . . . . 5 (𝑎 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) → (((𝑏𝑎) < 𝐷𝑎𝑏) ↔ ((𝑏 − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) < 𝐷 ∧ ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≠ 𝑏)))
99 fveq2 6332 . . . . . . . . 9 (𝑎 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) → (𝑊𝑎) = (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))
10099oveq2d 6809 . . . . . . . 8 (𝑎 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) → ((𝑊𝑏) − (𝑊𝑎)) = ((𝑊𝑏) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))))
101100fveq2d 6336 . . . . . . 7 (𝑎 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) → (abs‘((𝑊𝑏) − (𝑊𝑎))) = (abs‘((𝑊𝑏) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))))
102101, 95oveq12d 6811 . . . . . 6 (𝑎 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) → ((abs‘((𝑊𝑏) − (𝑊𝑎))) / (𝑏𝑎)) = ((abs‘((𝑊𝑏) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (𝑏 − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))))
103102breq2d 4798 . . . . 5 (𝑎 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) → (𝐸 ≤ ((abs‘((𝑊𝑏) − (𝑊𝑎))) / (𝑏𝑎)) ↔ 𝐸 ≤ ((abs‘((𝑊𝑏) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (𝑏 − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))))
10494, 98, 1033anbi123d 1547 . . . 4 (𝑎 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) → (((𝑎𝐻𝐻𝑏) ∧ ((𝑏𝑎) < 𝐷𝑎𝑏) ∧ 𝐸 ≤ ((abs‘((𝑊𝑏) − (𝑊𝑎))) / (𝑏𝑎))) ↔ ((((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻𝑏) ∧ ((𝑏 − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) < 𝐷 ∧ ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≠ 𝑏) ∧ 𝐸 ≤ ((abs‘((𝑊𝑏) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (𝑏 − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))))))
105 breq2 4790 . . . . . 6 (𝑏 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) → (𝐻𝑏𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))))
106105anbi2d 614 . . . . 5 (𝑏 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) → ((((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻𝑏) ↔ (((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)))))
107 oveq1 6800 . . . . . . 7 (𝑏 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) → (𝑏 − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) = (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))
108107breq1d 4796 . . . . . 6 (𝑏 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) → ((𝑏 − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) < 𝐷 ↔ (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) < 𝐷))
109 neeq2 3006 . . . . . 6 (𝑏 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) → (((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≠ 𝑏 ↔ ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≠ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))))
110108, 109anbi12d 616 . . . . 5 (𝑏 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) → (((𝑏 − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) < 𝐷 ∧ ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≠ 𝑏) ↔ ((((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) < 𝐷 ∧ ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≠ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)))))
111 fveq2 6332 . . . . . . . 8 (𝑏 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) → (𝑊𝑏) = (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))))
112111fvoveq1d 6815 . . . . . . 7 (𝑏 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) → (abs‘((𝑊𝑏) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) = (abs‘((𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))))
113112, 107oveq12d 6811 . . . . . 6 (𝑏 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) → ((abs‘((𝑊𝑏) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (𝑏 − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))) = ((abs‘((𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))))
114113breq2d 4798 . . . . 5 (𝑏 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) → (𝐸 ≤ ((abs‘((𝑊𝑏) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (𝑏 − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))) ↔ 𝐸 ≤ ((abs‘((𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))))
115106, 110, 1143anbi123d 1547 . . . 4 (𝑏 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) → (((((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻𝑏) ∧ ((𝑏 − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) < 𝐷 ∧ ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≠ 𝑏) ∧ 𝐸 ≤ ((abs‘((𝑊𝑏) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (𝑏 − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) ↔ ((((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) ∧ ((((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) < 𝐷 ∧ ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≠ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) ∧ 𝐸 ≤ ((abs‘((𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))))))
116104, 115rspc2ev 3474 . . 3 ((((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ∈ ℝ ∧ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) ∈ ℝ ∧ ((((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) ∧ ((((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)) < 𝐷 ∧ ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≠ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) ∧ 𝐸 ≤ ((abs‘((𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))) − (𝑊‘((((2 · 𝑁)↑-𝐽) / 2) · 𝑚)))) / (((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚))))) → ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ ((𝑎𝐻𝐻𝑏) ∧ ((𝑏𝑎) < 𝐷𝑎𝑏) ∧ 𝐸 ≤ ((abs‘((𝑊𝑏) − (𝑊𝑎))) / (𝑏𝑎))))
11792, 116syl 17 . 2 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ (((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) ≤ 𝐻𝐻 ≤ ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1))))) → ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ ((𝑎𝐻𝐻𝑏) ∧ ((𝑏𝑎) < 𝐷𝑎𝑏) ∧ 𝐸 ≤ ((abs‘((𝑊𝑏) − (𝑊𝑎))) / (𝑏𝑎))))
1186, 117rexlimddv 3183 1 (𝜑 → ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ ((𝑎𝐻𝐻𝑏) ∧ ((𝑏𝑎) < 𝐷𝑎𝑏) ∧ 𝐸 ≤ ((abs‘((𝑊𝑏) − (𝑊𝑎))) / (𝑏𝑎))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1071   = wceq 1631  wcel 2145  wne 2943  wrex 3062   class class class wbr 4786  cmpt 4863  cfv 6031  (class class class)co 6793  cr 10137  0cc0 10138  1c1 10139   + caddc 10141   · cmul 10143   < clt 10276  cle 10277  cmin 10468  -cneg 10469   / cdiv 10886  cn 11222  2c2 11272  0cn0 11494  cz 11579  +crp 12035  (,)cioo 12380  cfl 12799  cexp 13067  abscabs 14182  Σcsu 14624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216  ax-addf 10217  ax-mulf 10218
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-iin 4657  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-of 7044  df-om 7213  df-1st 7315  df-2nd 7316  df-supp 7447  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-2o 7714  df-oadd 7717  df-er 7896  df-map 8011  df-pm 8012  df-ixp 8063  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fsupp 8432  df-fi 8473  df-sup 8504  df-inf 8505  df-oi 8571  df-card 8965  df-cda 9192  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-9 11288  df-n0 11495  df-z 11580  df-dec 11696  df-uz 11889  df-q 11992  df-rp 12036  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-ioo 12384  df-ico 12386  df-icc 12387  df-fz 12534  df-fzo 12674  df-fl 12801  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-limsup 14410  df-clim 14427  df-rlim 14428  df-sum 14625  df-dvds 15190  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-starv 16164  df-sca 16165  df-vsca 16166  df-ip 16167  df-tset 16168  df-ple 16169  df-ds 16172  df-unif 16173  df-hom 16174  df-cco 16175  df-rest 16291  df-topn 16292  df-0g 16310  df-gsum 16311  df-topgen 16312  df-pt 16313  df-prds 16316  df-xrs 16370  df-qtop 16375  df-imas 16376  df-xps 16378  df-mre 16454  df-mrc 16455  df-acs 16457  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-submnd 17544  df-mulg 17749  df-cntz 17957  df-cmn 18402  df-psmet 19953  df-xmet 19954  df-met 19955  df-bl 19956  df-mopn 19957  df-cnfld 19962  df-top 20919  df-topon 20936  df-topsp 20958  df-bases 20971  df-cn 21252  df-cnp 21253  df-tx 21586  df-hmeo 21779  df-xms 22345  df-ms 22346  df-tms 22347  df-cncf 22901  df-ulm 24351
This theorem is referenced by:  knoppndvlem22  32861
  Copyright terms: Public domain W3C validator