![]() |
Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > knoppndv | Structured version Visualization version GIF version |
Description: The continuous nowhere differentiable function 𝑊 ( Knopp, K. (1918). Math. Z. 2, 1-26 ) is, in fact, nowhere differentiable. (Contributed by Asger C. Ipsen, 19-Aug-2021.) |
Ref | Expression |
---|---|
knoppndv.t | ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) |
knoppndv.f | ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) |
knoppndv.w | ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) |
knoppndv.c | ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) |
knoppndv.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
knoppndv.1 | ⊢ (𝜑 → 1 < (𝑁 · (abs‘𝐶))) |
Ref | Expression |
---|---|
knoppndv | ⊢ (𝜑 → dom (ℝ D 𝑊) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 468 | . . . . . 6 ⊢ ((𝜑 ∧ ℎ ∈ dom (ℝ D 𝑊)) → 𝜑) | |
2 | ax-resscn 10199 | . . . . . . . . . 10 ⊢ ℝ ⊆ ℂ | |
3 | 2 | a1i 11 | . . . . . . . . 9 ⊢ (𝜑 → ℝ ⊆ ℂ) |
4 | knoppndv.t | . . . . . . . . . . 11 ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) | |
5 | knoppndv.f | . . . . . . . . . . 11 ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) | |
6 | knoppndv.w | . . . . . . . . . . 11 ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) | |
7 | knoppndv.n | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
8 | knoppndv.c | . . . . . . . . . . . . 13 ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) | |
9 | 8 | knoppndvlem3 32842 | . . . . . . . . . . . 12 ⊢ (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1)) |
10 | 9 | simpld 482 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
11 | 9 | simprd 483 | . . . . . . . . . . 11 ⊢ (𝜑 → (abs‘𝐶) < 1) |
12 | 4, 5, 6, 7, 10, 11 | knoppcn 32831 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑊 ∈ (ℝ–cn→ℂ)) |
13 | cncff 22916 | . . . . . . . . . 10 ⊢ (𝑊 ∈ (ℝ–cn→ℂ) → 𝑊:ℝ⟶ℂ) | |
14 | 12, 13 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑊:ℝ⟶ℂ) |
15 | ssid 3773 | . . . . . . . . . 10 ⊢ ℝ ⊆ ℝ | |
16 | 15 | a1i 11 | . . . . . . . . 9 ⊢ (𝜑 → ℝ ⊆ ℝ) |
17 | 3, 14, 16 | dvbss 23885 | . . . . . . . 8 ⊢ (𝜑 → dom (ℝ D 𝑊) ⊆ ℝ) |
18 | 17 | adantr 466 | . . . . . . 7 ⊢ ((𝜑 ∧ ℎ ∈ dom (ℝ D 𝑊)) → dom (ℝ D 𝑊) ⊆ ℝ) |
19 | simpr 471 | . . . . . . 7 ⊢ ((𝜑 ∧ ℎ ∈ dom (ℝ D 𝑊)) → ℎ ∈ dom (ℝ D 𝑊)) | |
20 | 18, 19 | sseldd 3753 | . . . . . 6 ⊢ ((𝜑 ∧ ℎ ∈ dom (ℝ D 𝑊)) → ℎ ∈ ℝ) |
21 | 1, 20 | jca 501 | . . . . 5 ⊢ ((𝜑 ∧ ℎ ∈ dom (ℝ D 𝑊)) → (𝜑 ∧ ℎ ∈ ℝ)) |
22 | 15 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ ℎ ∈ ℝ) → ℝ ⊆ ℝ) |
23 | 14 | adantr 466 | . . . . . 6 ⊢ ((𝜑 ∧ ℎ ∈ ℝ) → 𝑊:ℝ⟶ℂ) |
24 | 8 | ad2antrr 705 | . . . . . . . 8 ⊢ (((𝜑 ∧ ℎ ∈ ℝ) ∧ (𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+)) → 𝐶 ∈ (-1(,)1)) |
25 | simprr 756 | . . . . . . . 8 ⊢ (((𝜑 ∧ ℎ ∈ ℝ) ∧ (𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+)) → 𝑑 ∈ ℝ+) | |
26 | simprl 754 | . . . . . . . 8 ⊢ (((𝜑 ∧ ℎ ∈ ℝ) ∧ (𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+)) → 𝑒 ∈ ℝ+) | |
27 | simplr 752 | . . . . . . . 8 ⊢ (((𝜑 ∧ ℎ ∈ ℝ) ∧ (𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+)) → ℎ ∈ ℝ) | |
28 | 7 | ad2antrr 705 | . . . . . . . 8 ⊢ (((𝜑 ∧ ℎ ∈ ℝ) ∧ (𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+)) → 𝑁 ∈ ℕ) |
29 | knoppndv.1 | . . . . . . . . 9 ⊢ (𝜑 → 1 < (𝑁 · (abs‘𝐶))) | |
30 | 29 | ad2antrr 705 | . . . . . . . 8 ⊢ (((𝜑 ∧ ℎ ∈ ℝ) ∧ (𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+)) → 1 < (𝑁 · (abs‘𝐶))) |
31 | 4, 5, 6, 24, 25, 26, 27, 28, 30 | knoppndvlem22 32861 | . . . . . . 7 ⊢ (((𝜑 ∧ ℎ ∈ ℝ) ∧ (𝑒 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+)) → ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ ((𝑎 ≤ ℎ ∧ ℎ ≤ 𝑏) ∧ ((𝑏 − 𝑎) < 𝑑 ∧ 𝑎 ≠ 𝑏) ∧ 𝑒 ≤ ((abs‘((𝑊‘𝑏) − (𝑊‘𝑎))) / (𝑏 − 𝑎)))) |
32 | 31 | ralrimivva 3120 | . . . . . 6 ⊢ ((𝜑 ∧ ℎ ∈ ℝ) → ∀𝑒 ∈ ℝ+ ∀𝑑 ∈ ℝ+ ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ ((𝑎 ≤ ℎ ∧ ℎ ≤ 𝑏) ∧ ((𝑏 − 𝑎) < 𝑑 ∧ 𝑎 ≠ 𝑏) ∧ 𝑒 ≤ ((abs‘((𝑊‘𝑏) − (𝑊‘𝑎))) / (𝑏 − 𝑎)))) |
33 | 22, 23, 32 | unbdqndv2 32839 | . . . . 5 ⊢ ((𝜑 ∧ ℎ ∈ ℝ) → ¬ ℎ ∈ dom (ℝ D 𝑊)) |
34 | 21, 33 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ ℎ ∈ dom (ℝ D 𝑊)) → ¬ ℎ ∈ dom (ℝ D 𝑊)) |
35 | 34 | pm2.01da 800 | . . 3 ⊢ (𝜑 → ¬ ℎ ∈ dom (ℝ D 𝑊)) |
36 | 35 | alrimiv 2007 | . 2 ⊢ (𝜑 → ∀ℎ ¬ ℎ ∈ dom (ℝ D 𝑊)) |
37 | eq0 4077 | . 2 ⊢ (dom (ℝ D 𝑊) = ∅ ↔ ∀ℎ ¬ ℎ ∈ dom (ℝ D 𝑊)) | |
38 | 36, 37 | sylibr 224 | 1 ⊢ (𝜑 → dom (ℝ D 𝑊) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 382 ∧ w3a 1071 ∀wal 1629 = wceq 1631 ∈ wcel 2145 ≠ wne 2943 ∃wrex 3062 ⊆ wss 3723 ∅c0 4063 class class class wbr 4787 ↦ cmpt 4864 dom cdm 5250 ⟶wf 6026 ‘cfv 6030 (class class class)co 6796 ℂcc 10140 ℝcr 10141 1c1 10143 + caddc 10145 · cmul 10147 < clt 10280 ≤ cle 10281 − cmin 10472 -cneg 10473 / cdiv 10890 ℕcn 11226 2c2 11276 ℕ0cn0 11499 ℝ+crp 12035 (,)cioo 12380 ⌊cfl 12799 ↑cexp 13067 abscabs 14182 Σcsu 14624 –cn→ccncf 22899 D cdv 23847 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-inf2 8706 ax-cnex 10198 ax-resscn 10199 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-addrcl 10203 ax-mulcl 10204 ax-mulrcl 10205 ax-mulcom 10206 ax-addass 10207 ax-mulass 10208 ax-distr 10209 ax-i2m1 10210 ax-1ne0 10211 ax-1rid 10212 ax-rnegex 10213 ax-rrecex 10214 ax-cnre 10215 ax-pre-lttri 10216 ax-pre-lttrn 10217 ax-pre-ltadd 10218 ax-pre-mulgt0 10219 ax-pre-sup 10220 ax-addf 10221 ax-mulf 10222 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-fal 1637 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-int 4613 df-iun 4657 df-iin 4658 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-se 5210 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-isom 6039 df-riota 6757 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-of 7048 df-om 7217 df-1st 7319 df-2nd 7320 df-supp 7451 df-wrecs 7563 df-recs 7625 df-rdg 7663 df-1o 7717 df-2o 7718 df-oadd 7721 df-er 7900 df-map 8015 df-pm 8016 df-ixp 8067 df-en 8114 df-dom 8115 df-sdom 8116 df-fin 8117 df-fsupp 8436 df-fi 8477 df-sup 8508 df-inf 8509 df-oi 8575 df-card 8969 df-cda 9196 df-pnf 10282 df-mnf 10283 df-xr 10284 df-ltxr 10285 df-le 10286 df-sub 10474 df-neg 10475 df-div 10891 df-nn 11227 df-2 11285 df-3 11286 df-4 11287 df-5 11288 df-6 11289 df-7 11290 df-8 11291 df-9 11292 df-n0 11500 df-z 11585 df-dec 11701 df-uz 11894 df-q 11997 df-rp 12036 df-xneg 12151 df-xadd 12152 df-xmul 12153 df-ioo 12384 df-ico 12386 df-icc 12387 df-fz 12534 df-fzo 12674 df-fl 12801 df-seq 13009 df-exp 13068 df-hash 13322 df-cj 14047 df-re 14048 df-im 14049 df-sqrt 14183 df-abs 14184 df-limsup 14410 df-clim 14427 df-rlim 14428 df-sum 14625 df-dvds 15190 df-struct 16066 df-ndx 16067 df-slot 16068 df-base 16070 df-sets 16071 df-ress 16072 df-plusg 16162 df-mulr 16163 df-starv 16164 df-sca 16165 df-vsca 16166 df-ip 16167 df-tset 16168 df-ple 16169 df-ds 16172 df-unif 16173 df-hom 16174 df-cco 16175 df-rest 16291 df-topn 16292 df-0g 16310 df-gsum 16311 df-topgen 16312 df-pt 16313 df-prds 16316 df-xrs 16370 df-qtop 16375 df-imas 16376 df-xps 16378 df-mre 16454 df-mrc 16455 df-acs 16457 df-mgm 17450 df-sgrp 17492 df-mnd 17503 df-submnd 17544 df-mulg 17749 df-cntz 17957 df-cmn 18402 df-psmet 19953 df-xmet 19954 df-met 19955 df-bl 19956 df-mopn 19957 df-cnfld 19962 df-top 20919 df-topon 20936 df-topsp 20958 df-bases 20971 df-ntr 21045 df-cn 21252 df-cnp 21253 df-tx 21586 df-hmeo 21779 df-xms 22345 df-ms 22346 df-tms 22347 df-cncf 22901 df-limc 23850 df-dv 23851 df-ulm 24351 |
This theorem is referenced by: cnndvlem1 32865 |
Copyright terms: Public domain | W3C validator |