Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppcnlem6 Structured version   Visualization version   GIF version

Theorem knoppcnlem6 32815
Description: Lemma for knoppcn 32821. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
Hypotheses
Ref Expression
knoppcnlem6.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppcnlem6.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppcnlem6.n (𝜑𝑁 ∈ ℕ)
knoppcnlem6.1 (𝜑𝐶 ∈ ℝ)
knoppcnlem6.2 (𝜑 → (abs‘𝐶) < 1)
Assertion
Ref Expression
knoppcnlem6 (𝜑 → seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))) ∈ dom (⇝𝑢‘ℝ))
Distinct variable groups:   𝐶,𝑚,𝑛,𝑦   𝑚,𝐹,𝑧   𝑛,𝑁,𝑦   𝑥,𝑁   𝑇,𝑛,𝑦   𝜑,𝑚,𝑛,𝑦,𝑧   𝑥,𝑚,𝑧
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥,𝑧)   𝑇(𝑥,𝑧,𝑚)   𝐹(𝑥,𝑦,𝑛)   𝑁(𝑧,𝑚)

Proof of Theorem knoppcnlem6
Dummy variables 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 11935 . 2 0 = (ℤ‘0)
2 0zd 11601 . 2 (𝜑 → 0 ∈ ℤ)
3 reex 10239 . . 3 ℝ ∈ V
43a1i 11 . 2 (𝜑 → ℝ ∈ V)
5 knoppcnlem6.t . . 3 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
6 knoppcnlem6.f . . 3 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
7 knoppcnlem6.n . . 3 (𝜑𝑁 ∈ ℕ)
8 knoppcnlem6.1 . . 3 (𝜑𝐶 ∈ ℝ)
95, 6, 7, 8knoppcnlem5 32814 . 2 (𝜑 → (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))):ℕ0⟶(ℂ ↑𝑚 ℝ))
10 nn0ex 11510 . . . 4 0 ∈ V
1110mptex 6651 . . 3 (𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚)) ∈ V
1211a1i 11 . 2 (𝜑 → (𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚)) ∈ V)
13 eqid 2760 . . . . 5 (𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚)) = (𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))
1413a1i 11 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚)) = (𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚)))
15 simpr 479 . . . . 5 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑚 = 𝑘) → 𝑚 = 𝑘)
1615oveq2d 6830 . . . 4 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑚 = 𝑘) → ((abs‘𝐶)↑𝑚) = ((abs‘𝐶)↑𝑘))
17 simpr 479 . . . 4 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
18 ovexd 6844 . . . 4 ((𝜑𝑘 ∈ ℕ0) → ((abs‘𝐶)↑𝑘) ∈ V)
1914, 16, 17, 18fvmptd 6451 . . 3 ((𝜑𝑘 ∈ ℕ0) → ((𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))‘𝑘) = ((abs‘𝐶)↑𝑘))
208recnd 10280 . . . . . 6 (𝜑𝐶 ∈ ℂ)
2120abscld 14394 . . . . 5 (𝜑 → (abs‘𝐶) ∈ ℝ)
2221adantr 472 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (abs‘𝐶) ∈ ℝ)
2322, 17reexpcld 13239 . . 3 ((𝜑𝑘 ∈ ℕ0) → ((abs‘𝐶)↑𝑘) ∈ ℝ)
2419, 23eqeltrd 2839 . 2 ((𝜑𝑘 ∈ ℕ0) → ((𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))‘𝑘) ∈ ℝ)
25 eqid 2760 . . . . . . 7 (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))) = (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))
2625a1i 11 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) → (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))) = (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))
27 simpr 479 . . . . . . . 8 (((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) ∧ 𝑚 = 𝑘) → 𝑚 = 𝑘)
2827fveq2d 6357 . . . . . . 7 (((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) ∧ 𝑚 = 𝑘) → ((𝐹𝑧)‘𝑚) = ((𝐹𝑧)‘𝑘))
2928mpteq2dv 4897 . . . . . 6 (((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) ∧ 𝑚 = 𝑘) → (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)) = (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑘)))
3017adantrr 755 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) → 𝑘 ∈ ℕ0)
313mptex 6651 . . . . . . 7 (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑘)) ∈ V
3231a1i 11 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) → (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑘)) ∈ V)
3326, 29, 30, 32fvmptd 6451 . . . . 5 ((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) → ((𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))‘𝑘) = (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑘)))
34 simpr 479 . . . . . . 7 (((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) ∧ 𝑧 = 𝑤) → 𝑧 = 𝑤)
3534fveq2d 6357 . . . . . 6 (((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) ∧ 𝑧 = 𝑤) → (𝐹𝑧) = (𝐹𝑤))
3635fveq1d 6355 . . . . 5 (((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) ∧ 𝑧 = 𝑤) → ((𝐹𝑧)‘𝑘) = ((𝐹𝑤)‘𝑘))
37 simprr 813 . . . . 5 ((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) → 𝑤 ∈ ℝ)
38 fvexd 6365 . . . . 5 ((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) → ((𝐹𝑤)‘𝑘) ∈ V)
3933, 36, 37, 38fvmptd 6451 . . . 4 ((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) → (((𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))‘𝑘)‘𝑤) = ((𝐹𝑤)‘𝑘))
4039fveq2d 6357 . . 3 ((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) → (abs‘(((𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))‘𝑘)‘𝑤)) = (abs‘((𝐹𝑤)‘𝑘)))
417adantr 472 . . . 4 ((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) → 𝑁 ∈ ℕ)
428adantr 472 . . . 4 ((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) → 𝐶 ∈ ℝ)
435, 6, 41, 42, 37, 30knoppcnlem4 32813 . . 3 ((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) → (abs‘((𝐹𝑤)‘𝑘)) ≤ ((𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))‘𝑘))
4440, 43eqbrtrd 4826 . 2 ((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) → (abs‘(((𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))‘𝑘)‘𝑤)) ≤ ((𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))‘𝑘))
4521recnd 10280 . . . 4 (𝜑 → (abs‘𝐶) ∈ ℂ)
46 absidm 14282 . . . . . 6 (𝐶 ∈ ℂ → (abs‘(abs‘𝐶)) = (abs‘𝐶))
4720, 46syl 17 . . . . 5 (𝜑 → (abs‘(abs‘𝐶)) = (abs‘𝐶))
48 knoppcnlem6.2 . . . . 5 (𝜑 → (abs‘𝐶) < 1)
4947, 48eqbrtrd 4826 . . . 4 (𝜑 → (abs‘(abs‘𝐶)) < 1)
5045, 49, 19geolim 14820 . . 3 (𝜑 → seq0( + , (𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))) ⇝ (1 / (1 − (abs‘𝐶))))
51 seqex 13017 . . . 4 seq0( + , (𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))) ∈ V
52 ovex 6842 . . . 4 (1 / (1 − (abs‘𝐶))) ∈ V
5351, 52breldm 5484 . . 3 (seq0( + , (𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))) ⇝ (1 / (1 − (abs‘𝐶))) → seq0( + , (𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))) ∈ dom ⇝ )
5450, 53syl 17 . 2 (𝜑 → seq0( + , (𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))) ∈ dom ⇝ )
551, 2, 4, 9, 12, 24, 44, 54mtest 24377 1 (𝜑 → seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))) ∈ dom (⇝𝑢‘ℝ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2139  Vcvv 3340   class class class wbr 4804  cmpt 4881  dom cdm 5266  cfv 6049  (class class class)co 6814  𝑓 cof 7061  cc 10146  cr 10147  0cc0 10148  1c1 10149   + caddc 10151   · cmul 10153   < clt 10286  cle 10287  cmin 10478   / cdiv 10896  cn 11232  2c2 11282  0cn0 11504  cfl 12805  seqcseq 13015  cexp 13074  abscabs 14193  cli 14434  𝑢culm 24349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-inf2 8713  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226  ax-addf 10227  ax-mulf 10228
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-of 7063  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-oadd 7734  df-er 7913  df-map 8027  df-pm 8028  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-sup 8515  df-inf 8516  df-oi 8582  df-card 8975  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-n0 11505  df-z 11590  df-uz 11900  df-rp 12046  df-ico 12394  df-fz 12540  df-fzo 12680  df-fl 12807  df-seq 13016  df-exp 13075  df-hash 13332  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-limsup 14421  df-clim 14438  df-rlim 14439  df-sum 14636  df-ulm 24350
This theorem is referenced by:  knoppcnlem9  32818
  Copyright terms: Public domain W3C validator