Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppcnlem1 Structured version   Visualization version   GIF version

Theorem knoppcnlem1 32810
Description: Lemma for knoppcn 32821. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
Hypotheses
Ref Expression
knoppcnlem1.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppcnlem1.2 (𝜑𝐴 ∈ ℝ)
knoppcnlem1.3 (𝜑𝑀 ∈ ℕ0)
Assertion
Ref Expression
knoppcnlem1 (𝜑 → ((𝐹𝐴)‘𝑀) = ((𝐶𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴))))
Distinct variable groups:   𝐴,𝑛,𝑦   𝐶,𝑛,𝑦   𝑛,𝑀   𝑛,𝑁,𝑦   𝑇,𝑛,𝑦   𝜑,𝑦,𝑛
Allowed substitution hints:   𝐹(𝑦,𝑛)   𝑀(𝑦)

Proof of Theorem knoppcnlem1
StepHypRef Expression
1 knoppcnlem1.f . . . 4 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
21a1i 11 . . 3 (𝜑𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))))
3 oveq2 6822 . . . . . . 7 (𝑦 = 𝐴 → (((2 · 𝑁)↑𝑛) · 𝑦) = (((2 · 𝑁)↑𝑛) · 𝐴))
43fveq2d 6357 . . . . . 6 (𝑦 = 𝐴 → (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)) = (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴)))
54oveq2d 6830 . . . . 5 (𝑦 = 𝐴 → ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))) = ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴))))
65mpteq2dv 4897 . . . 4 (𝑦 = 𝐴 → (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))) = (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴)))))
76adantl 473 . . 3 ((𝜑𝑦 = 𝐴) → (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))) = (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴)))))
8 knoppcnlem1.2 . . 3 (𝜑𝐴 ∈ ℝ)
9 nn0ex 11510 . . . . 5 0 ∈ V
109mptex 6651 . . . 4 (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴)))) ∈ V
1110a1i 11 . . 3 (𝜑 → (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴)))) ∈ V)
122, 7, 8, 11fvmptd 6451 . 2 (𝜑 → (𝐹𝐴) = (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴)))))
13 oveq2 6822 . . . 4 (𝑛 = 𝑀 → (𝐶𝑛) = (𝐶𝑀))
14 oveq2 6822 . . . . . 6 (𝑛 = 𝑀 → ((2 · 𝑁)↑𝑛) = ((2 · 𝑁)↑𝑀))
1514oveq1d 6829 . . . . 5 (𝑛 = 𝑀 → (((2 · 𝑁)↑𝑛) · 𝐴) = (((2 · 𝑁)↑𝑀) · 𝐴))
1615fveq2d 6357 . . . 4 (𝑛 = 𝑀 → (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴)) = (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))
1713, 16oveq12d 6832 . . 3 (𝑛 = 𝑀 → ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴))) = ((𝐶𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴))))
1817adantl 473 . 2 ((𝜑𝑛 = 𝑀) → ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴))) = ((𝐶𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴))))
19 knoppcnlem1.3 . 2 (𝜑𝑀 ∈ ℕ0)
20 ovexd 6844 . 2 (𝜑 → ((𝐶𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴))) ∈ V)
2112, 18, 19, 20fvmptd 6451 1 (𝜑 → ((𝐹𝐴)‘𝑀) = ((𝐶𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1632  wcel 2139  Vcvv 3340  cmpt 4881  cfv 6049  (class class class)co 6814  cr 10147   · cmul 10153  2c2 11282  0cn0 11504  cexp 13074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-i2m1 10216  ax-1ne0 10217  ax-rrecex 10220  ax-cnre 10221
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6817  df-om 7232  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-nn 11233  df-n0 11505
This theorem is referenced by:  knoppcnlem3  32812  knoppcnlem4  32813  knoppcnlem10  32819  knoppndvlem6  32835  knoppndvlem7  32836  knoppndvlem11  32840
  Copyright terms: Public domain W3C validator